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Abstract
Single molecule fluorescence in situ hybridization (smFISH) can be used 
to visualize transcriptional activation at the single allele level. We and 
others have applied this approach to better understand the mechanisms 
of activation by steroid nuclear receptors. However, there is limited 
understanding of the interconnection between the activation of target gene 
alleles inside the same nucleus and within large cell populations. 

Using the transcriptional coactivator GREB1 gene as an early estrogen 
receptor (ER) response target, we applied smFISH to track E2-activated 
GREB1 allelic transcription over early time points to evaluate potential 
dependencies between alleles within the same nucleus. We compared two 
types of experiments where we altered the initial status of GREB1 basal 
transcription by treating cells with and without the elongation inhibitor 
flavopiridol (FV).  

E2 stimulation changed the frequencies of active GREB1 alleles in the cell 
population, and this was independent of FV pre-treatment. In FV treated 
cells, the response time to hormone was delayed, albeit still reaching at 90 
minutes the same levels as in cells not treated by FV. We show that the joint 
frequencies of GREB1 activated alleles observed at the cell population 
level imply significant dependency between pairs of alleles within the 
same nucleus. We identify probabilistic models of joint alleles activations 
by applying a principle of maximum entropy. For pairs of alleles, we have 
then quantified statistical dependency between their GREB1 activations by 
computing their mutual information. To further analyze the time course of 
GREB1 activation observable at the population level, we have introduced 
a stochastic model compatible with allelic statistical dependencies, and we 
have fitted this model to our data by intensive simulations. This provided 
estimates of the average lifetime for degradation of GREB1 introns and of 
the mean time between two successive transcription rounds.  Our approach 
informs on how to extract information on single allele regulation by the 
estrogen receptor from within a large population of cells, and should be 
applicable to many other genes.
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Introduction
Time-dependent modulation of gene transcription is necessary for a cell 

to respond to stimuli in a dynamic and reversible manner. The difficulty in 
dissecting the complex mechanisms of biological responses is enhanced by 
the fact that gene transcription in individual cells within a population appears 
to be vastly heterogeneous [1–8].
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We and others have used single molecule RNA FISH 
(smFISH) to study the effect of stimuli on gene transcription 
by population analysis of fixed samples [3,7], which 
facilitates the capture of a large number of events, their 
spatial location, and the nascent RNA from individual alleles; 
however, this is at the expense of time dynamics. Specifically, 
we have focused on the estrogen receptor (ER), a well-
established model for transcriptional response to hormones 
(i.e., 17β-estradiol, E2), using GREB1 as a prototypical 
early ER target gene [2,8,9]. In our previous study [8], we 
identified that GREB1 responded to E2 in a cell- and allele-
dependent manner, and that the frequency of allele activation 
was tunable by specific epigenetic inhibitors, indicating that 
the cell has mechanisms in place to control the frequency of 
allelic responses to stimuli. 

To complement the population analysis, several time 
dynamic studies have been performed. The method of choice 
has been engineering one or more copies of a gene to contain 
repeat sequences (e.g., MS2, PP7) that are recognized by 
specific fluorescent proteins [10-12]. These live studies 
proposed that gene transcription occurs in stochastic bursts, 
where a gene is ON for a short period of time, followed 
by longer periods of inactivity. Live cell experiments of 
engineered GREB1 alleles [2], and another prototypical E2-
target, TFF1 [1], have shown a highly-dynamic response to 
hormone in individual cells. From these pivotal studies, the 
following observations have been made: 1) E2 regulates the 
frequency of bursting by reducing the promoter OFF times; 
2) extrinsic noise governs the cell-by-cell heterogeneity in
response; 3) there is some correlation between alleles in the
same nucleus; and, 4) at the level of individual cells, live
imaging experiments can be accurately fitted by a stochastic
model driven by a two-states promoter.

To model the stochastic gene transcription bursts 
observed in individual cells, several papers [1,2,13-20] have 
introduced and simulated engineered gene promoter models 
randomly switching between one active state and several 
inactive states. The most popular have been two states models 
where the gene promoter is either ON or OFF. For instance, in 
Fritzch et al [2]., "two-states" models were fitted to GREB1 
transcription bursts observed live in single cells, with model 
parameters exhibiting quite strong fluctuations from cell-to-
cell, which encouraged our present population-level study of 
endogenous GREB1 gene expression. 

Here, we sought to study and model the initial phases 
of hormone stimulation by using smFISH on fixed MCF-7 
breast cancer cells in culture. In our experiments, smFISH 
images are acquired every 15 minutes, at times T0 = 0, T1 = 15
min,...,T6 = 90 min. At each time T = Tj a large cell population 
pop(T) of N(T) cells is imaged, with N(T) ranging from 400 
to 1000. We compared two types of initial conditions: 

- in (FV+E2)-experiments, a flavopiridol (FV)
pretreatment of cells started two hours before T0 to block 
ongoing transcriptional elongation [21] until FV release at T0, 
which synchronizes the initiation step of the transcriptional 
cycle.  

- in E2-experiments, cells were maintained in “native”
state at T = T0, so that the transcription cycle was random 
before T0 At T0 each experiment started from seven distinct 
initial cell populations {init(0), ..., init(7)}. Each population 
init(j) evolved separately from time T0 until Tj , and the state 
of pop(Tj) was only imaged at time Tj . This approach does 
not enable tracking the same cells and active alleles across 
time. At each time T = Tj, image analysis of smFISH data 
provided GREB1 transcription statistics across all cells 
of pop(Tj).  For k=0,1,2,3,4 we computed the frequencies 
Qk(T) of nuclei exhibiting “k” detectable nascent mRNAs 
(“active alleles”). The frequencies Qk(T) aggregate 
transcription activities over the N(T) cells of pop(T). As 
seen in [1,2,13-20], transcription bursts of these N(T) 
individual cells are random and clearly non synchronous, 
so that our transcription data which aggregate GREB1 
transcriptions of individual cells across a large population 
pop(T) provide population-level activation frequencies 
which evolve smoothly in time with no significant bursts. To 
model the smooth time dynamics of the frequencies Qk(T), 
we introduced a “population-level” stochastic transcription 
model involving four key parameters: 

1) mean waiting time “A” between successive productive 
transcription rounds;

2) mean lifetime “L” of nascent mRNA;

3) mean elongation time “MTD” to complete one mRNA; 
and,

4) the minimal number “VTH” of RNA molecules
enabling fluorescence detection.

Parameters estimation for our population-level model 
was implemented by massive stochastic simulations to reach 
a good fit to smFISH imaging data across biological replicate 
experiments.  

A key step was to show that at each time T = Tk , the 
population-level transcription activation frequencies 
indicated statistical dependencies between pairs (AL1, 
AL2) of GREB1 alleles within individual nuclei. At each 
time T = Tj, we applied a maximum entropy principle to 
fit a probabilistic model to the frequencies of joint allele 
activations observed at the population level. This enabled 
the quantification of dependencies between pairs of alleles 
by computing their Mutual Information. While the present 
study focused on GREB1 gene transcription, we expect that 
the algorithmic modeling and data analysis techniques that 
we developed will be applicable for other hormone-induced 
genes transcription.  
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Figure 1: GREB1 smFISH time course analysis in MCF-7 breast cancer cells with and without flavopiridol block/release. A). MCF-7 
cells were treated for the indicated times with 10nM E2 and GREB1 smFISH was performed at each time point. Images are at 60x/1.42, 
deconvolved and max projected. Red spots represent intronic and green spots exonic probe sets. Samples labeled as FV+E2, were pretreated 
with 1µM flavopiridol (FV) for 2 hours, followed by three washes and E2 treatment. Scale bar: 10µm.  B). The time courses of five frequencies 
{Q0(T),Q1(T),Q2(T),Q3(T),Q4(T)} of active GREB1 alleles/cell are shown as follows.  The red curves display the frequencies Qk(T) after 
averaging over three E2 experiments. The blue curves display the Qk(T) after averaging over three FV+E2 experiments. The vertical bars 
display the dispersion of Qk(T) values over three similar independent experiments. Note that the dispersion of the Qk(T) values across 3 
experiments is much larger than the standard error of estimation affecting Qk(T) in each experiment.  At the end of all experiments (T= 90min), 
all Qk(T) stabilize to a value ≈ 20%.

Results
Time course analysis of early E2-induced GREB1 
gene transcription by smFISH before and after 
treatment by flavopiridol

As we have shown previously [8], E2 activates GREB1 
gene transcription in a cell- and allele-dependent manner, as 
measured by smFISH using spectrally separated exon and 
intron probe sets.  Here, we sought to focus on the initial phase 
of hormonal stimulation (first 90 minutes) by measuring cell 
population pop(T) responses at 15 minutes intervals (T0 =
0, T1 = 15 min, …, T6 = 90 min) under two types of cell 
state initial conditions and three independent biological 
replicates per condition type. The first initial condition was 
to consider the initial state of gene transcription as random, 
i.e. all individual alleles already have their own past “history”
with RNA polymerases II located at random phases during
either initiation or elongation, which is represented by
cells grown for 48 hours in hormone-depleted media. Cell
population transcriptional data after this initial cell state
are displayed by RED curves and labeled “E2-curves” in
every Figure. The second initial condition was designed to
arrest transcription elongation by using the reversible CDK9
inhibitor, flavopiridol (FV), for 2 hours before E2 treatment
at T0, causing elongation to stop and RNA polymerase II to

stall at gene promoters [21].  We then released the FV block 
by three washes, and stimulated GREB1 gene transcription 
by hormone treatment (E2, 10nM); in the Figures the 
corresponding population data are displayed by BLUE curves 
and labeled “FV+E2”.  

For each independent biological replicate, the analyzed 
pop(T) ranged from approximately 400 to 1000 cells, 
captured by high resolution (60x/1.42NA) epifluorescence 
deconvolution microscopy (representative images are in 
Figure 1A). Our temporal resolution has limitations as 
GREB1 probe visualization requires ~20 individually labeled 
fluorescent oligo probes (out of 48) to bind to nascent RNA, 
which, based on their location on the gene, occurs when the 
GREB1 is ~60-70% transcribed; for sequences of oligos refer 
to [8,22]. On average, the speed of RNA Polymerase II in 
mammalian cells (i.e., ~2-2.5Kb/min, [21,23,24]), suggests 
that detection of newly made, partial RNAs could occur only 
after ~30 minutes of E2 induction. 

As smFISH experiments do not directly follow the 
activation of individual alleles live, the best proxy is to analyze 
a time series that evaluates transcriptional events across 
the population pop(T) of size N(T) using several statistical 
approaches describing the set of observable active alleles. 
In each nucleus, we used custom automated image analysis 
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(described in detail in the Methods section), to identify the 
number k = 0,1,2,3,4 of active GREB1 alleles. From this we 
derived the total number Nk(T) of nuclei exhibiting k active 
alleles, thus yielding the five frequencies Qk(T) = Nk(T)/N(T) 
The behavior of the cell population at each time point is then 
represented by the five GREB1 activation frequencies {Q0
(T),Q1(T),Q2(T),Q3(T),Q4(T)},which naturally add up to 1 
(Figure 1B). These frequencies were calculated across more 
than 400 cells per replicate, with standard error margins of the 
order of 2.5% (see Supplemental Materials). The effects of 
flavopiridol block/release on E2-induced gene transcription 
(Figure 1B, blue curves) appear to result in: 1) a significant 
increase in Qk(T) at all the time points T< 60 min; and, 2) a 
corresponding decrease in all the other Qk(T), collectively 
indicating that the FV pre-treatment was effective. More 
noteworthy are the two following observations: 1) the cell-to-
cell and allele-by-allele variation in responses is maintained 
if transcription elongation is manipulated indicating that this 
part of the transcription cycle is not controlling synchronicity 
of responses to hormone; and, 2) the final frequencies of 
activation at time points T larger than 60min are virtually 
identical whether we used FV pre-treatment or not, indicating 
that the E2 response “catches up” independently of the starting 
conditions, so that a random cell state starting condition (i.e. 
no FV pre-treatment) does not offer an advantage in term of 
response to hormone over time.

Allelic activations by E2-induced GREB1 
transcription exhibit signi icant statistical 
dependency. 

We explored whether GREB1 activation occurred 
independently at the four alleles present in each of the 
aneuploid MCF-7 nuclei by estimating the probabilities of 
joint activation for pairs of alleles AL1, AL2 At time T, in any 
nucleus NUCn, each allele can either be ON or OFF, therefore 
yielding 16 distinct possible joint activation states {S0,S1,S2,.., 
S15}for the 4 alleles AL1,AL2,AL3,AL4.. Denote probn(Sk) the 
probability that the four alleles in NUCn are in the joint state 
Sk. The 16 probabilities probn(S0), probn(S1),…,probn(S15) 
add up to 1, and depend on time T. Due to population 
heterogeneity, probn(Sk) will depend on many cell extrinsic and 
intrinsic factors specific to each NUCn ; hence, our image data 
could only record averages FT(Sk) of the probabilities 
probn(Sk) over all nuclei NUCn of pop(T). Concretely, since 
image resolution did not enable allele matching between 
distinct cells, the probabilities FT(Sk) were not directly 
computable from image analysis, which could only provide the 
five observed frequencies Q0(T),Q1(T),Q2(T),Q3(T),Q4(T) 
shown in Figure 1B. For each time point T, the algorithmic 
challenge was hence to compute 16 unknown probabilities  
FT(S0),…., FT(S15) starting only from the 5 observed frequencies 
Q0(T),Q1(T),Q2(T),Q3(T),Q4(T). We identified the five explicit 
linear relations (see Methods Equation 1) expressing the 
Qk(T)  in terms of the FT(Sk), but this only provided five 

explicit linear constraints on our 15 unknowns FT(Sk). To 
handle this estimation problem, a natural first approach was 
to assume that under the probability distribution FK, one 
had statistical independence of activations among the four 
GREB1 alleles. In practical terms, independence means that 
there is no quantifiable mechanism through which any allele 
interferes or influences activation potential in other alleles in 
the same nucleus. We have proved (see Methods Equation 
2) that, if the probability FT of joint activations involved
statistical independence between alleles activations, the
observed frequencies Q0(T),Q1(T),Q2(T),Q3(T),Q4(T) would
have to verify extremely restrictive polynomial constraints
(see Methods MM5 and Equation 2).

All our experiments revealed that these polynomial 
constraints were never satisfied by the observed 
Q0(T),Q1(T),Q2(T),Q3(T),Q4(T). Thus, to evaluate the FT(Sk) 
from frequencies of joint alleles activations observed at 
population level, we had to reject the hypothesis of statistical 
independence between activations of the four distinct alleles 
within a nucleus.  

We have confirmed this theoretical result, by comparing, 
at each time point, the experimental activation frequencies 
Q0(T),Q1(T),Q2(T),Q3(T),Q4(T)  with the analogous activation 
frequencies generated by joint probability models FT 
based on independence between allele activations. Indeed, 
independence would imply that each probability model FT 
is fully determined once one specifies activation frequencies 
at time T for each single allele AL1,AL2,AL3,AL4.  For each 
time T, we have generated 106 such models FT based on the 
hypothesis of independence between alleles activations and 
computed the associated virtual activations frequencies [virQ
0(T),virQ1(T),virQ2(T),virQ3(T), virQ4(T)] to compare them to 
the observed [Q0(T), Q1(T), Q2(T), Q3(T), Q4(T)], Our results 
clearly show that none of these 106 sets of virtual frequencies 
[virQ0(T),virQ1(T),virQ2(T),virQ3(T),virQ4(T)] could match 
the experimentally observed [Q0(T), Q1(T), Q2(T), Q3(T), 
Q4(T)]. This was visualized by scatter plots, each one 
displaying a pair [Qi(T), Qj(T)] observed over time for each 
experiment. For example, Figure 2 separately displays scatter 
plots for the two pairs [Q0(T), Q1(T)] and [Q0(T), Q4(T)]. The 
red dots represent these pairs of frequencies observed via 
smFISH or E2 experiments. The blue dots similarly display 
the same pairs for FV+ E2 experiments. Arrows indicate 
the observations of frequencies [Q0(T), Q1(T)] and [Q0(T), 
Q4(T)]. at successive times T for an individual experiment. 
The 106 green dots represent the virtual pairs [virQ0(T), 
virQ1(T)] or [virQ0(T), virQ4(T)]. associated to 106  virtual 
joint probability models FT based upon the independence 
hypothesis. As shown in Figure 2, both blue and red dots are 
positioned well away from green dots, thus confirming that, 
for population level modeling, one must reject the hypothesis 
of independence between alleles.
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Figure 2: Statistical dependency between GREB1 alleles activations. Scatter plot representation of two frequency pairs [Q0(T), Q1(T)] on the 
left and [Q0(T), Q4(T)] on the right. The blue (FV+E2) and red (E2) curves display the real data time evolutions for the pair of frequencies 
observed in two experiments. Arrows indicate the time direction. On the left panel, each of the 106 green dots represent one pair of frequencies 
[q0(T), q1(T)] generated by at least one model with independent alleles. Note that the green dots always remain distinct from the experimental 
red and blue dots. Similar graphs were obtained for any pair Qi(T), Qj(T) with i ≠ j. This indicates that probabilistic modeling of transcription 
activities aggregated at cell population level requires assuming some dependency between alleles activations.

As just showed above, to be compatible with experimental 
data, the unknown average frequencies FT(S0),…, FT(S15) of 
jointly activated alleles across cell population pop(T) must 
exhibit dependencies between alleles activations. Each one 
of the 5 observed frequencies Qk(T) is an explicit linear 
combination of the 16 unknowns FT(S0),…, FT(S15) (see 
Methods, Equation1). Since there was no probabilistic model 
FT achieving zero dependencies between alleles activations 
and also verifying these 5 linear constraints, we decided 
to seek a model FT compatible with these 5 constraints 
and minimizing dependencies between alleles activations. 
For fitting a joint probability distribution FT to data under 
linear constraints, a generic principle is that minimizing 
dependencies is approximately equivalent to maximizing 
the entropy Ent(FT) of the probability model FT under the 
same linear constraints (see Methods MM6). This maximum 
entropy principle is well established in the physics of gases 
or of spinglass magnets arrays, and has also successfully 
been used to model images by Gibbs distributions [25,26]. 
Here we have applied this principle to theoretically compute 
the unique joint probability FT of activated alleles which has 
maximum entropy among all probabilities compatible with the 
five observed frequencies Q0(T), Q1(T), Q2(T), Q3(T), Q4(T). 
We then proved that this max-entropy probability model FT 
has full symmetry, meaning that arbitrary permutations of 
the four alleles do not change the frequencies of their joint 
state of activations. For instance, due to average probability 
modeling of the whole population pop(T), each of the four 
alleles has the same activation probability PAL1  (T) at time 
T. We have thus obtained explicit formulas expressing each
one of the 16 unknowns FT(S0),…, FT(S15) in terms of the
five observed frequencies Qk(T) (see Methods, equation 1).
These formulas also gave us explicit expressions for two key
probabilities (see Methods, Equation 3), namely: 1) for each

single allele AL1, the probability PAL₁ (T) that AL1 will be active 
at time T; and 2) for each pair of alleles AL1, AL2 in the same 
nucleus, the probability PAL1,AL2(T) that AL1 and AL2 will be 
simultaneously active at time T. The probabilities PAL₁ (T) and 
PAL₁ AL₂ (T) do not change if we replace AL1, AL2 by any other 
two alleles ALi, ALj within the same nucleus. This is due to 
the full symmetry of the joint probabilities FT (Sk), a property 
which was derived from the maximum entropy principle.  

In Figure 3 A, we display the evolution of PAL₁ (T) over 
time. For FV+ E2 experiments (blue curve), the initial PAL₁ (0) 
is nearly 0 and PAL₁ (T) remains practically equal to zero until 
T=30min since GREB1 transcription duration is of the order 
of 40 min and GREB1 transcriptions are nearly blocked by 
FV before T = 0. For E2 experiments (red curves), PAL₁ (0) is 
naturally higher than for FV+E2 experiments (blue curves) 
due to some GREB1 transcription activity at low level before 
infusion of E2 at T=0. For all experiments, PAL₁ (T) increases 
steadily with T and reaches a maximum ranging from 40% to 
60% at T= 90min.  

For each pair of alleles (AL1, AL2) in the same nucleus, 
their joint random activation states at time T can have 
only one of four possible configurations: active/active, 
active/inactive, inactive/active, or inactive/inactive. We 
have explicitly computed the probabilities of these four 
configurations in terms of the observed frequencies Qk(T) 
The probability PAL₁ AL₂ (T) that the two given alleles AL1 and 
AL2 are simultaneously active at time T was then plotted for 
all experiments (see Figure 3B). For FV+ E2 experiments 
(blue curves), PAL₁ AL₂ (T) remains quite low until T=30min 
since most polymerase elongations started after time T=0 is 
still too incomplete at T=30min to be reliably detectable. For 
all experiments, PAL₁ AL₂ (T) increases with T, and reaches a 
maximum ranging from 25% to 45% at T = 90 min.
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Figure 3: Time course for GREB1 activation probabilities PAL₁ (T) and PAL₁ AL₂ (T). In (A), PAL₁ (T) is the computed probability that a given 
single allele AL1 will be GREB1 activated at time T, and in (B), PAL₁ AL₂ (T) is the joint probability that a given pair of alleles AL1, AL2 will both 
be activated at time T. The time courses of PAL₁ (T) and PAL₁ AL₂ (T) between T=15min and T=90min are displayed by red curves for three E2 
experiments and by blue curves for three (FV+E2) experiments. The vertical bars display the standard errors on these probabilities.

PAL1 (T) E2 exp 1 E2 exp 2 E2 exp 3 FV+E2 exp 4 FV+E2 exp 5 FV+E2 exp 6

T = 0 8.8 +/- 0.9 25.2 +/- 1.6 NA 3.0 +/- 0.6 3.0 +/- 0.7 NA

T = 15 min 13.4 +/- 1.1 31.7 +/- 1.7 25.8 +/- 1.9 4.5 +/- 0.6 3.5 +/- 0.4 3.0 +/- 0.4

T = 30 min 21.8 +/- 1.4 39.5 +/- 1.7 30.0 +/- 2.4 8.8 +/- 0.9 4.8 +/- 0.5 6.0 +/- 0.5

T = 45 min 32.2 +/- 1.8 48.0 +/- 2.1 36.5 +/- 2.4 22.3 +/- 1.6 14.6 +/- 1.2 14.0 +/- 0.8

T = 60 min 41.0 +/- 1.8 54.0 +/- 2.1 38.5 +/- 2.0 43.2 +/- 1.5 36.6 +/- 1.4 21.8 +/- 0.9

T = 75 min 46.3 +/- 2.0 59.0 +/- 2.0 38.3 +/- 2.1 56.5 +/- 1.4 51.5 +/- 1.6 29.5 +/- 0.9

T = 90 min 51.0 +/- 1.9 63.6 +/- 1.9 40.8 +/- 2.2 62.9 +/- 1.3 53.5 +/- 1.4 36.5 +/- 1.1

Table 1a: Activation probability PAL1 (T) displayed in %  for single allele AL1

PAL1 AL2 (T) E2 exp 1 E2 exp 2 E2 exp 3 FV+E2 exp 4 FV+E2 exp 5 FV+E2 exp 6
T= 0 2.8 +/- 0.6 11.4 +/- 1.3 NA 0.5 +/- 0.2 0.3 +/- 0.2 NA

T= 15 min 4.6 +/- 0.7 16.0 +/- 1.5 12.6 +/- 1.6 0.7 +/- 0.2 0.3 +/- 0.1 0.2 +/- 0.1

T= 30 min 9.6 +/- 1.1 23.3 +/- 1.7 16.7 +/- 2.2 3.0 +/- 0.6 0.9 +/- 0.2 1.2 +/- 0.2

T= 45 min 17.2 +/- 1.6 32.7 +/- 2.2 21.0 +/- 2.3 12.7 +/- 1.4 8.1 +/- 1.0 4.7 +/- 0.5

T= 60 min 24.5 +/- 1.7 38.0 +/- 2.3 21.0 +/- 1.9 29.0 +/- 1.4 24.3 +/- 1.4 8.5 +/- 0.7

T= 75 min 30.2 +/- 2.0 41.8 +/- 2.2 20.8 +/- 1.9 40.5 +/- 1.5 36.2 +/- 1.7 13.3 +/- 0.7

T= 90 min 35.0 +/- 2.0 47.2 +/- 2.3 23.1 +/- 2.1 47.4 +/- 1.5 39.3 +/- 1.4 18.3 +/- 1.0

Table 1b: Joint activation probability PAL1 AL2 (T) displayed in %  for two alleles AL1, AL2
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Figure 4: For pairs of alleles AL1, AL2, the dependency ratio dep(T) is significantly larger than 1 at confidence level 95%, which indicates 
significant statistical dependency between GREB1 activations of  AL1 and AL2. We display the time course of dep(T) at all T ≥ 15min for three 
E2 experiments (see A), and at all T ≥30min for three FV+E2 experiments (see B). The vertical bars display the standard errors of estimation 
on dep(T). Note that the ratio dep(T) remains larger than 1.15 in these time ranges.

Figure 5: Mutual Information between pairs of alleles. For each one of our experiments, and at all time points T, we have computed the Mutual 
Information MutInfAL₁,AL₂(T) between the stochastic GREB1 activations of any given pair of alleles AL1, AL2 within the same nucleus. We display 
the time course of MutInfAL₁,AL₂(T) for three E2 experiments and T   ≥ 15 min (see A), as well as for three FV+E2 experiments and T ≥ 30min 
(see B). The vertical bars display the standard errors on MutInfAL₁,AL₂(T) and show that in these time ranges, the mutual information is always 
significantly positive with confidence level 95%, which indicates a statistically significant level of dependency between GREB1 activations for 
pairs of alleles AL1, AL2. At times T = 0, T = 15min for FV+E2 experiments, and at T = 0 for E2 experiments, the joint probabilities AL1, AL2  
are too small to accurately compute MutInfAL₁,AL₂(T).

Statistical Validation of Dependency between 
GREB1 alleles activations after E2 treatment

For our probabilistic model FT fitted by maximum entropy 
to actual GREB1 activation frequencies aggregated at the cell 
population level, our explicit computation of the probabilities 
PAL₁ (T) and PAL₁ AL₂ (T) enabled us to test whether the activation 
of alleles AL1, AL2  is statistically dependent of each other, 
and to quantify their statistical dependency. Indeed at time 
T, statistical independence for the activation of alleles AL1, 
AL2  would classically imply the equality PAL₁ AL₂ (T) > PAL₁ 
(T) × PAL₂ (T), In our experiments this equality is significantly
not satisfied, as validated by our detailed analysis of
estimation errors on PAL₁ AL₂ (T), PAL₁ (T), PAL₂ (T)  (see Methods
MM5,MM6).

At time T, the conditional probability that {AL2 is 
active} given that {AL1 is active} is classically computed 
by probT(AL2 active │AL1 active)  =  PAL₁ AL₂(T) ̸ PAL₁ (T), For 
all our 6 experiments (see Figure 4), we have PAL₁ AL₂ (T) > 
PAL₁ (T) × PAL₂ (T) at all time points T ≥ 15min. This forces 
the conditional probability probT(AL2 active │AL1 active) to 
be always larger than the unconditioned probability PAL₂(T) 
= probT(AL2 active. This is a clear indicator of statistical 
dependency between the activations of AL1 and AL2. Indeed 
one can quantify the level of dependency between activations 
of AL1 and AL2 by comparing the dependency ratio dep(T) 
= PAL₁ AL₂(T) ̸ PAL₁ (T) × PAL₂(T) to the baseline value 1. Our 
detailed statistical study of estimation errors on dep(T) (see 
Methods section MM6) shows that the inequality dep(T) > 1 
is significantly valid at the 95% confidence level for all our 

http://


Ghasemi SM, et al., J Bioinform Syst Biol 2024 
DOI:10.26502/jbsb.5107084

Citation: S.Mahmood Ghasemi, Pankaj Singh K, Hannah Johnson L, Ayse Koksoy, Michael Mancini A, Fabio Stossi and Robert Azencott. Analysis 
and Modeling of Early Estradiol-induced GREB1 Single Allele Gene Transcription at the Population Level. Journal of Bioinformatics 
and Systems Biology. 7 (2024): 108-128.

Volume 7 • Issue 2 115 

Table 2: E2 experiments: Parameters estimates for three Population Level Models:

Parameter E2 exp. 1 E2 exp. 2 E2 exp. 3

𝑀𝑇𝐷 = Mean Transcription Duration 44 ± 2 min 44 ± 2 min 43 ± 2 min

𝐿 = mean lifetime of nascent mRNA 21 ± 1 min 21 ± 1 min 20.5 ± 1 min

𝐴 = mean time between transcriptions (after E2 treatment) 18 ± 1 min 15 ± 1 min 22 ± 1 min

𝐴+ = mean time between transcriptions (before E2 treatment) 36 ± 2 min 22 ± 1 min 29 ± 1 min

𝑉𝑇𝐻 = smallest # of RNA molecules to detect mRNA spots 2 molecules 2 molecules 2 molecules

Table 3: FV+E2 experiments: Parameters estimates for three Population Level Models

Parameter FV+E2 exp. 4 FV+E2 exp. 5 FV+E2 exp. 6

𝑀𝑇𝐷 = Mean Transcription Duration 44 ±1 min 44 ± 1 min 44 ± 2 min

𝐿 = mean lifetime of nascent mRNA 21 ± 1 min 20.5 ± 1 min 20.5 ± 1 min

𝐴 = mean time between transcriptions (after E2 treatment) 14.5 ± 1 min 16 ± 1 min 23.5 ± 1 min

𝑉𝑇𝐻 = smallest # mRNA molecules to detect mRNA spots 2 molecules 2 molecules 2 molecules

E2 experiments as soon as T  ≥ 15min, and for all our FV+E2 
experiments when T ≥ 30 min. In this time range this proves 
signi icant statistical dependency between the activations of 
any alleles pair AL1, AL2. In fact, the dependency ratio dep(T) 
remains larger than 1.15 at all analyzed time points. Hence, 
when AL1 is active at time T, the conditional probability that 
AL2 is also active is at least 15% higher than the unconditioned 
activation probability for AL2. Note that for initial times  T = 
0 or T = 15min, the probabilities PAL₁ AL₂ (T) and PAL₁ (T) × PAL₂ 
(T) are typically too small for reliable estimation of the ratio
dep(T).

The probabilistic dependency between the activation 
states of two alleles AL1 , AL2can also be quantified by their 
Mutual Information MutInfAL₁,AL₂(T) (see formulas in Methods 
section MM6). Recall that MutInfAL₁,AL₂(T) ≥ 0  evaluates how 
knowing that AL1 is active at time T improves the accuracy 
of predicting whether AL2 is active at time T. Complete 
independence of AL1 and AL2 would imply MutInfAL₁,AL₂(T) = 
0, so strictly positive values of MutInfAL₁,AL₂(T) indicate 
dependency between the activation of AL1 and AL2. Since the 
population average probability FT of jointly activated alleles 
has full symmetry, all allele pairs ALi, ALj must have mutual 
information identical to MutInfAL₁,AL₂(T). We have computed 
MutInfAL₁,AL₂(T) for all experiments, and all T. As detailed in 
Methods section MM6, the generic formula giving 
MutInfAL₁,AL₂(T) involves terms such as PAL₁ (T) log(PAL₁ (T)) 
and PAL₁ AL₂(T)log(PAL₁ AL₂(T)) for which the estimation errors 
become high when the activation probabilities PAL₁ (T) and 
PAL₁ AL₂(T) are very small. For (FV+E2) experiments, and 
for T ≤ 30 min, both PAL₁ (T) and PAL₁ AL₂ (T) are very close to 
0, so that the natural estimates of MutInfAL₁,AL₂(T) become 
statistically reliable only for T ≥ 45min.  For E2 experiments, 
since GREB1 transcription activity starts before T=0, one can 
reliably estimate MutInfAL₁,AL₂(T) as soon as T ≥ 15 min. In 
Figure 5, we display the time course of mutual information 
MutInfAL₁,AL₂(T) for each one of our experiments.  

For FV+E2 experiments as well as for E2 experiments, 
and for 45min ≤ T ≤ 90min, the values of MutInfAL₁,AL₂(T) 
roughly range from 0.04 to 0.09. For our ranges of mutual 
information values m = MutInfAL₁,AL₂(T), the dependency ratio 
dep(T) can be roughly approximated by (1 + sqrt[m ̸ (1 ˗ p)]) 
where p =  PAL₁ (T). This mathematical approximation valid 
for small “m” explains why small mutual information values 
reflect much more sizeable positive values for the difference 
[dep(T) ˗ 1]. The estimation errors indicate that for 45min ≤ T 
≤ 90min  and for all our experiments, the mutual information 
MutInfAL₁,AL₂(T) is significantly positive at the 95% confidence 
level. This confirms that, at the population level, we detect 
significant statistical dependency between jointly activated 
allele pairs within the same nucleus.

Population level stochastic model to emulate time 
course of GREB1 allele activation frequencies

We next sought to fit a population level stochastic 
model dedicated to emulating the dynamics of GREB1 
transcriptional frequencies computed across large cell 
populations. Several papers (see 2,18,20) have modeled the 
dynamics of random gene transcription bursts observed in 
live single cells by stochastic "two-states” promoter models, 
in which gene promoters are viewed as stochastic automatons 
randomly cycling through an ON-state and an OFF-state. In 
these studies, the parameters of two-states promoter models 
are separately fitted to each single cell continuously observed 
at very short time intervals. As explicitly pointed out by (2), 
the estimated parameters of these single cell models vary quite 
strongly (up to 20%) from cell to cell, due to heterogeneities 
in cells biology and/or in their local chemical environment. 
In our smFISH experiments, the frequency Qk(T) of nuclei 
exhibiting "k" GREB1 activated alleles at time T is estimated 
by averaging across several hundred cells of pop(T). Since 
random gene transcriptions bursts are highly decorrelated 
from cell to cell and have short duration, averaging joint 
activations frequencies across pop(T) essentially smooths out 
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the random GREB1 transcription bursts occurring in single 
cells. We have verified this intuitive point by simultaneous 
simulation of N=400 "two-states” promoter models for 
GREB1 transcription, followed by averaging at each time T 
the GREB1 transcription bursts occurring at time T among 
these N simulations. In our experiments, which involve large 
cell populations, the observed frequencies Qk(T) indeed have 
rather smooth time evolutions, as well as the probabilities PAL₁ 
(T) and PAL₁ AL₂(T)   derived from the frequencies Q0(T), Q1(T),
Q2(T), Q3(T), Q4(T)

To emulate the time course of GREB1 transcription 
frequencies observed across each cell population pop(T), 
we introduce a population level stochastic model, where 
successive ER DNA binding occurs randomly after 
exponentially distributed waiting times that can be followed 
by coregulator recruitment and transcription initiation. At 
these random transcription initiation times, GREB1 mRNA 
elongation proceeds with fixed Mean Transcription Duration 
(MTD). Several studies (21,23,24) indicate that gene 
transcription occurs at a roughly constant speed of 2 to 2.5 kb/
min, which results in an MTD ≈ 44min for GREB1. Random 
time durations between successive rounds of GREB1 mRNA 
elongation are assumed to be independent of each other, 
and to have the same exponential density with mean value 
A, which is a model parameter. Such random time gaps are 
characteristic of Poisson stochastic processes.  

We denote "nas" any complete nascent GREB1 mRNA, 
and "exonas" / "intnas" the exonic  and intronic parts of nas. 
The (random) lifetimes of exonas and intnas are assumed 
to have exponential decay. The mean half-life of exonas 
has been empirically calculated via actinomycin D pulse-
chase experiments and is approximately 3 hours. As our 
experiments last 90 minutes, the exonas decay does not 
significantly affect nas visibility during this time. However, 
the intronic component intnas was calculated to have a mean 
lifetime <35 min, which does directly affect the lifetimes 
of completed nascent mRNAs. The random lifetime of any 
complete nascent GREB1 mRNA (from completion to nearly 
full decay) is assumed to have an exponential density with 
unknown mean value L. 

Our population level model is thus determined by 3 
unknown parameters {A+, A, L, MTD}. Since analysis of our 
smFISH images suggest that the smallest nascent mRNA 
spots may not be reliably detected, we introduce another 
unknown parameter, the Visibility Threshold VTH such that 
nascent mRNA spots are detectable on our images only if they 
contain at least VTH molecules. For any plausible values of 
{A+, A, L, MTD, VTH}, this model enables rapid simulations 
generating frequency FAL₁ (T) of activation at time T for a 
single allele. Quality of fit is evaluated by the differences 
│FAL₁ (T) ˗ PAL₁ (T)│ over a range of time points T, where the 
probability PAL1(T) is derived as above from the frequencies 

Q0(T), Q1(T), Q2(T), Q3(T), Q4(T) computed via analysis of 
smFISH images.

We point out that our population level stochastic model 
does not attempt to model GREB1 transcriptions in single 
cells. Indeed, our model aims only to emulate the allele 
activation frequencies resulting from the aggregation (at cell 
population level) of the random allele activations generated 
by several hundreds of independent two-states stochastic 
models of GREB1 transcription activities, with two-states 
model parameters varying slightly from cell to cell.

Estimation of parameters for our population level 
model by intensive simulations

To fit the population level model to GREB1 transcription 
data provided by each FV+E2 experiment, we had to 
estimate the four parameters {A+, A, L, MTD, VTH} which 
were expected to belong to naturally pre-defined ranges (see 
Methods, section MM8). But for E2 experiments with no 
flavopiridol pretreatment, spontaneous GREB1 transcription 
events at low rates can start long before E2 treatment at  
T = 0. Some of the alleles activated within the last hour before 
T = 0 will generate incomplete nascent mRNAs that will not 
be detectable at T = 0 and will only be detected by image 
analysis after T = 15 min or T = 30 min. Taking into account 
these nascent mRNAs whose transcription started before T=0 
complicates the data analysis for E2 experiments with no 
FV pretreatment, and requires introducing a new parameter, 
namely the mean value A+ of waiting times between 
successive GREB1 transcription rounds before E2 treatment. 
As shown in [1,2], E2 treatment increases the frequency of 
genes transcriptions, so we should assume that A+ > A. Thus, 
fitting population level data for E2 experiments with no 
FV pretreatment requires the estimation of five parameters  
{A+, A, L, MTD, VTH}.  

For the unknown values of the parameters {A+, A, L, 
MTD} natural ranges were identified from existing literature 
(see Methods, section MM8, MM9). For the small integer 
VTH, the potential range of values was evaluated by analyzing 
the rough number of molecules within mRNA smFISH spots 
detected in the images.

To actually fit the parameters of our population level 
models to each GREB1 experiment, we performed intensive 
simulations of this stochastic model to systematically explore 
the full discretized ranges of the 5 parameters {A+, A, L, 
MTD, VTH}. For each combination of parameters values, 
and each time point T, these simulations yielded estimates 
for the activation frequency FAL₁ (T) of single alleles across 
a large population of virtual cells.  We only retained the 
model parameters with good fit to data, i.e., ensuring that 
│FAL₁ (T) ˗ PAL₁ (T)│ ≤ 3%  where the probability PAL₁(T) of 
single allele activation was derived as above from image 
analysis.  We selected final parameters values by enforcing 
parameter stability across all 6 experiments for L,MTD,VTH. 
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Tables 2 and 3 display the best fit parameter values for three 
experiments with no FV pre-treatment, and for three FV pre-
treated experiments. Our best model parameters achieved a 
quality of fit ≈ 3% for each experiment, in good compatibility 
with the margins of error on the PAL₁ (T) derived from image 
data.

These two tables exhibit good stability across all 6 
experiments for the mean transcription duration MTD ≈ 44 
min,   the mean lifetime L ≈ 21 min of nascent mRNAs, 
and the minimum number VTH = 2 molecules of mRNA 
necessary to detect a nascent mRNA spot. The mean waiting 
time A between successive GREB1 transcription cycles after 
E2 treatment had a wider range between 15 min and 23 min 
among all 6 experiments. We have not identified the main 
factors influencing the waiting times A, but cell population 
heterogeneity is likely to strongly impact the variations in A 
observed from one experiment to the next. Indeed in (2), the 
authors mentioned that for their two-states model focused 
on GREB1 transcription observed on separate single cells, 
the estimated model parameters (such as our parameter A) 
did strongly vary from cell to cell, with relative variations 
up to 20%. It is also possible that A may not remain strictly 
constant in time during E2 induction.

Discussion
Stimulus-controlled gene transcription is one of the 

essential ways a cell senses and responds to environmental 
changes. While this process has been heavily studied in 
multiple models, a full understanding of how the regulation 
of events leading to gene transcription unfolds is constantly 
evolving. From numerous studies across species and models 
(1˗8, 11, 14, 16, 18,19), it appears that cells respond to stimuli 
in a very heterogeneous manner and, even within the same 
nucleus, different copies of the same target gene respond 
asynchronously. Is this because of fully stochastic biological 
reactions or given the evolutionary development of regulated 
mechanistic steps in gene expression, is regulated allelic 
activation a way to finely-tune individual cell responses to 
external causes. In our earlier study (8), we suggested cells 
can use an epigenetic mechanism to control the frequency of 
active alleles in the nucleus. Here, we focused on the same 
biological system, the hormone (E2) stimulated GREB1 gene 
(2,8,9) in MCF-7 breast cancer cells to ask a few additional 
basic questions: 1) can we synchronize the response of 
individual alleles by altering transcription elongation? 2) 
can we determine if alleles in the same nucleus are acting 
independently or not? 3) can we develop a simplified model 
to emulate, at the cell population level, the first phases of 
hormonal response over time, with stability of the model 
parameters across independent biological replicates?  

To address these questions, we compared GREB1 
transcription activity in large cell populations under two types 
of initial conditions: 1) FV+E2 experiments where prior to 

E2 treatment of our cell populations at T = 0, transcription 
elongation was synchronized and then restarted by addition 
and wash-out of the reversible CDK9 inhibitor, flavopiridol 
(FV).  2) E2 experiments where at T = 0, cell populations are 
still in their natural random state after several hours without 
hormone treatment and with their transcription cycles left 
untouched. Our experimental data strongly indicate that 
“synchronizing” RNA Polymerase II at the elongation step 
is not sufficient to synchronize hormonal responses at the 
cell-by-cell or allele-by-allele levels. Indeed, for the two 
types of initial cell population conditions, at the end time 
point (90 minutes post E2), identical values are reached by 
key characteristics such as the activation probability of each 
single allele and the joint activation frequencies for pairs or 
triplets of alleles. 

At each time T, our detailed analysis of observed 
frequencies for alleles jointly activated by GREB1 
nascent mRNA spots demonstrated a significant statistical 
dependency between pairs of activated alleles within the same 
nuclei. This led us to apply, at each time T, a principle of 
maximum entropy under constraints to compute a probability 
distribution FT for the joint activation states of the four alleles 
within typical nuclei. We then used the joint probability FT 
to compute the mutual information MutInf AL₁, AL₂ (T) between 
GREB1 activations of alleles AL1 and AL2 in order to quantify 
the dependency between pairs of alleles. A detailed error 
analysis for the estimated MutInf AL₁, AL₂ (T) showed that this 
mutual information had statistically significant positivity for 
all T ≥ 30 min, a clear indicator of moderate but significant 
dependency between activations for pairs of alleles. An 
interesting still open question is to identify biochemical factors 
enabling these dependencies, such as extrinsic chemical 
factors that can jointly affect all 4 alleles in each nucleus. 
Other cell-linked factors affecting GREB1 transcription of all 
4 alleles were also invoked in (2) to explain the high variation 
of transcription model parameters fitted separately to single 
cells. 

The probability distributions FT were computed at each 
fixed time T from population level frequencies of joint 
alleles activations. To emulate the time dynamics of these 
probabilities FT across time, we introduced a "population 
level" stochastic model, where random initializations of 
GREB1 transcriptions are driven by a Poisson process, and 
are always followed by actual elongation. We were led to 
introduce this population level model instead of the popular 
two-states models used for single cell transcription data (1,2) 
because averaging GREB1 transcription activity across large 
cell populations strongly smooths out the random transcription 
bursts occurring independently among individual cells. Since 
our smFISH image acquisition modalities do not enable the 
monitoring across time of single cells GREB1 transcription 
activity, we designed our population level model to roughly 
emulate the superposition of several hundreds of independent 
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two-states models of single cells gene transcription dynamics. 
For each one of our experiments (three FV+E2 experiments 
and three E2 only experiments) the parameters of our 
population level model were fitted to experimental data by 
intensive simulations exploring a very large set of combined 
parameter values. After this fitting of model parameters to 
data, the quality of fit was quite precise (less than 3% error 
on emulated frequencies of GREB1 activations), and across 
all 6 experiments we achieved good stability for the estimates 
of the three main parameters, namely the mean elongation 
duration MTD ≈ 44 min, the mean lifetime L ≈ 21min 
of nascent mRNAs, and the number VTH = 2 of mRNA 
molecules necessary for reliable detection of a nascent mRNA 
spot. The estimated mean waiting time A between successive 
GREB1 transcription after E2 treatment had a wider range 
(15min to 23min) among our 6 experiments. This variation is 
quite compatible with the 20% variations range reported in (2) 
for the parameters of two-states models fitted separately to 
single cells.

We expect our innovative modeling approach for hormone-
regulated target gene activity observed at population level to 
be applicable for many other genes and stimuli, a point we 
intend to validate through further experiments.  An interesting 
and open challenge is to concretely identify the main cell-
dependent factors simultaneously impacting transcriptional 
responses at individual alleles within the cell nucleus.

Materials and Methods 
1. Cell culture, materials and treatments:

MCF-7 cells were obtained from BCM Cell Culture Core, 
which routinely validates their identity by genotyping; 
cultures are constantly tested for mycoplasma contamination 
as determined by DAPI staining. MCF-7 were maintained in 
MEM plus 10%FBS media, as recommended by ATCC, 
except phenol red free and kept in culture for less than 60 
days before thawing a fresh vial. Three days prior to 
experiments, cells were plated on round poly-L-lysine coated 
coverslips in media containing 5% charcoal-dextran stripped 
and dialyzed FBS-containing media. Treatments with 17β-
estradiol (E2, Sigma) were performed as in [8]. For 
flavopiridol (FV+E2) experiments, cells were treated with FV 
1µM for 2 hours, then removed and cells were washed 3x 
with media prior to E2 1nM treatment for the indicated times.

2. Single molecule RNA FISH (smFISH):
GREB1 smFISH was performed as described in detailed 
protocols [8, 22]. Briefly, cells were fixed with 4% 
paraformaldehyde in PBS, on ice for 20 min. After a PBS 
wash, cells were left in 70%ethanol for a minimum of 4 
hours prior to hybridization (o/n, 37C) with the previously 
validated GREB1 probe sets (LGC Biosearch Technologies) 
covering introns (Atto647N) and exons (Quasar570) of the 
GREB1 gene.

3. Imaging:
High resolution imaging for smFISH was performed
on a Cytivia DVLive epifluorescence image

restoration microscope with an Olympus PlanApo 
60×/1.42NA objective and a 1.9k × 1.9k sCMOS camera. Z 
stacks (0.25 µm) covering the whole nucleus (∼10 µm) were 
acquired before applying a conservative restorative algorithm for 
quantitative image deconvolution. Ten or more random fields 
of view (FOVs) were acquired for each time point.

4. Image analysis: 

Each FOV has three fluorescence channels (DAPI, Q570 (exons) 
and A647N (introns)) in a 3D-image of size ≃ 1780 x 1780 x 
25. Each 3D image channel was projected on its maximum
intensity horizontal layer and then analyzed as a 2D image. In
the DAPI channel, we first detect and identify cell nuclei. The
main steps are: contrast thresholding, connected components
detection, elimination of holes, and size filtering. After dilating
the detected nuclear mask, we estimate cytoplasm boundaries by
the "watershed" segmentation algorithm.

Classical image segmentation techniques are applied 
in the two other channels to separately detect exonic and 
intronic spots. Contrast analysis is implemented by OTSU 
thresholding [27] for the exonic channel (Q570), and by 
max-entropy thresholding [28] for the intronic channel 
(A647N). We tested moderate variations of these thresholds to 
define accuracy margins for these two key spots detections. 
Nascent mRNAs spots are detected within each nucleus by 
identifying all pairs (exonic spot + intronic spot) having non-
empty intersection. At each time point, the number of active 
alleles detected per nucleus ranges from 0 to 4 since each cell 
has 4 GREB1 alleles [29]. Segmentation errors due to local 
cell packing or nuclei overlaps may occasionally generate 
spurious detections of more than 4 activation spots in a very 
small percentage of nuclei, which are then automatically 
discarded. Mature RNAs are identified as exonic spots 
(Q570) located within the cytoplasmic mask.

5. Probability distribution of joint alleles activations at
ixed time T:

A key modeling step was, at each fixed time T, to estimate 
the probabilities of joint alleles activation for pairs, triplets, 
quadruplets of alleles within a cell. We could only aim to 
estimate averages over pop(T) for each one of these joint 
probabilities, since in our experimental setup, distinct alleles 
are not identifiable.  At time T, in any given cell, each allele 
ALj (j = 1, 2, 3, 4) can either be active (ON = state "1"),  
or not (OFF = state "0").  The joint state of the four alleles  
AL1, AL2, AL3, AL4  is then described by a four-digit binary 
code, with 24 = 16 possible joint states labeled S0   =   0000,  
S1   =   0001, S2   =   0010,   S3   = 0011,   S4   =   0100, …, S14   =  1110,   
S15  =  1111

At time T, the cell population pop(T) contains N = N (T) 
nuclei, denoted NUC1,…, NUCN. For each nucleus NUCN, the 
current joint state for the four alleles will be equal to Sk , with 
some unknown probability probn(Sk). The 16 probabilities 
probn (S0), probn (S1) ,…, probn (S15) add up to 1, and depend 
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on the time point T. But due to biochemical heterogeneity of 
the cells in the population at time T, the probn (Sk) may also 
depend on unknown biochemical factors specific to nucleus 
NUCn. Since the observed frequencies Qk (T) of nuclei 
exhibiting k activated alleles at time T are computed across 
the whole of pop(T), they only provide reliable information 
on the average FT (Sk) of the probabilities probn (Sk) over all 
nuclei indices n = 1…N. More precisely, for each possible 
joint state Sk  of the four alleles, we want to estimate the 
average probability

1
1( ) [ ( ) ..... ( )]k k N kTF S prob S prob S
N

 = + + 
 

In a perfectly homogeneous cell population pop(T), the 
probabilities probn (Sk) would not depend on the nucleus 
NUCn at all and would hence also be equal to the average 
probability FT (Sk). This ideal situation is blurred by the 
significant biological diversity of GREB1 transcriptional 
response from cell to cell, a point well documented in (2).  

The frequencies FT (Sk) are not directly observable, since 
smFISH images do not enable specific matching of alleles 
AL1, AL2, AL3, AL4 from cell to cell. But as mathematically 
detailed in Methods and in Suppl. Materials 1 the observed 
activation frequencies Qk (T) are linked to the unknown 
frequencies: 

FT (S0) = FT (0000), FT (S1) = FT (0001) , …, FT (S15)  = FT 
(1111) by the following five linear relations:

Equation 1

Q0 (T)   =   FT (0000)

Q1 (T)   =   FT (1000) + FT (0100) + FT (0010) + FT (0001)

Q2 (T)   =   FT (1100) + FT (1010) + FT (1001) + FT (0110) + 
FT (0101) + FT (0011) 

Q3 (T)   =   FT (1110) +   FT (0111) + FT (1011) + FT (1101)

Q4 (T)   =   FT (1111)

Since these five linear relations cannot determine the 
16 unknown probabilities FT (Sk), we first checked if we 
could assume independence of alleles activation. Under the 
probability FT of joint alleles activations, denote fj (T) the 
probability that the specific allele ALj is activated. Assume 
temporarily that under FT the activations of each allele AL1, 
AL2, AL3, AL4   are statistically independent of each other 
(i.e. there are no mechanisms through which alleles interfere 
/ influence each other’s activations).  Independence implies 
that each unknown joint probability FT (Sk) can be expressed 
directly in terms of f1 (T), f2 (T), f3 (T), f4 (T) by simple product 
formulas such as

FT(0100)  =  (1 ˗ f1 (T)) f2 (T) (1 ˗  f3(T))  f4(T),  FT (1110)   
=  f1(T)  f2(T)  f3(T) (1  ˗ f4 (T)), …, etc.

Combining these product formulas with equation 1 we 
have formally proved (see Suppl. Materials 2) that statistical 

independence of single allele activations under the joint 
probability FT forces the following polynomial equation of 
degree 4

Q0 (T) z4 ˗ Q1 (T) z3 + Q2 (T) z2   ˗ Q3 (T) z   + Q4 (T) = 0
Equation 2   

to have four positive and real valued solutions z1,z2,z3,z4, We 
also showed that f1(T), f2(T), f3(T), f4(T) are then given by 

fj(T)  = zj ̸  (1  +  zj ) for j = 1,2,3,4.

Requiring a polynomial of degree 4 to have four positive and 
real valued roots z1, z2, z3, z4 imposes very restrictive 
polynomial constraints on the polynomial coefficients Q0(T), 
Q1(T), Q2(T), Q3(T), Q4(T). 

 In Suppl. Materials 2, we give examples of these 
polynomial constraints. Our experiments showed very clearly that 
these constraints are never satisfied by the observed Q0(T), 
Q1(T), Q2(T), Q3(T), Q4(T), and hence that, at the level of cell 
populations averages, one had to reject the hypothesis of 
statistical independence between activations of distinct alleles.  

6. Maximum entropy model and dependency between
alleles activations:

Because full independence of the four alleles is not compatible 
with our experimental data, we computed, for each T, the joint 
probability FT which minimizes dependency between alleles 
activation, and is still compatible with the observed Q0(T), Q1(T), 
Q2(T), Q3(T), Q4(T) via the linear relations imposed by Equation 
1. For probability distributions verifying a set of linear
constraints, a fairly generic principle is that minimizing
dependencies is roughly equivalent to maximizing entropy.
Recall that for any probability F = [F0,…,F15] on the set S = [S0,
…,S15] of joint alleles activation, the entropy Ent(F)  ≥  0 of F is
given by Ent (F) = ˗ F0 log (F0) ˗ F1 log (F1) ˗ …˗ F15 log (F15).

In Suppl. Materials 3, we apply this principle to compute the 
unique probability of joint alleles activation frequencies, denoted 
FT = [FT(S0),…, FT(S15)] which has maximum entropy 
among all probabilities compatible with the observed frequencies 
Q0(T), Q1(T), Q2(T), Q3(T), Q4(T) via the five linear relations 
of Equation 1. Our formulas show that the maxiTmum 
entropy joint probability FT must have full symmetry, 
meaning that permutations of the alleles AL1, AL2, AL3, AL4 do not 
change the frequencies of their joint activation states. Indeed, we 
have the explicit formulas

FT(0000)  = Q0 (T) 

FT(1000)   =  FT(0100)  =   FT(0010) = FT(0001) = Q1 (T) ̸ 4 

FT(1100)   =  FT(1010)  =   FT(1001) = FT(0110) = FT(0101)   
=  FT(0011)  = Q2 (T) ̸ 6  

FT(1110)   =  FT(0111)  =   FT(1011) = FT(1101) Q3 (T) ̸ 4 

FT (1111) = Q4 (T) 
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Since in our smFISH experimental images it is not possible 
to match specific alleles from cell to cell, full symmetry for 
the average probability FT of joint alleles activations is a 
natural feature for compatibility with our image data. 

Fix any single allele AL1. Due to the full symmetry of  
FT, the frequency   

PAL₁ (T) = FT{allele AL1 is active at time T}

takes the same value for all four alleles, namely (see 
Suppl. Materials 3), 

PAL₁ (T) = Q1(T)/4+ Q2 (T) /2  + 3Q3 (T) /4 + Q4 (T)    
Equation 3 

Consider now two alleles AL1 and AL2 in the same 
nucleus. At time T, the (random) state of AL1 is either "active" 
or "inactive", which we denote by AL1 = 1 or AL1 = 0. Same 
remark for the random state of AL2. The mutual information 
MutInfAL₁,AL₂(T) between the binary valued random states of 
AL1 and AL2 is given by the generic formula MutInf AL₁,AL₂ (T) 
= MutInf AL₂, AL₁ (T) = Ent(AL1) +  Ent(AL2) ˗ Ent(AL1,AL2) ≥ 0

where ʺintʺ denotes the entropy of a probability 
distribution. Higher values of MutInf AL₁,AL₂ (T) indicate higher 
dependency between the random activation states of AL1, AL2  
under the probability FT. The maximum possible value of 
MutInf AL₁,AL₂ (T) is 0.69, which can only be reached if there is 
a fully deterministic relation between the random activations 
of alleles AL1 and AL2. But MutInf AL₁,AL₂ (T) values higher than 
0.02 already indicate some significant level of dependency 
between AL1 and AL2. Conversely, values of MutInf AL₁,AL₂ (T) 
extremely close to 0 reflect near independence between the 
activation states of AL1 and AL2. At time T, the pair (AL1, 
AL2) has 4 possible joint states (00), (01)(10), (11). Their 
frequencies fT00, fT01, fT10, fT11, are easily derived from the 
explicit expression (see equation 3) of the probability FT, 
which yields

32
4

( )( )11 ( )
6 2T

Q TQ T Qf T= + +

1 2
0

( ) ( )00 ( )
2 2T

Q T Q T Q Tf = + +
        Equation 4

31 2 ( )( ) ( )01 10
4 3 4TT

Q TQ Tf Q Tf= = + +

The probability PAL₁,AL₂(T) = fT11 that AL1 and AL2 are 
simultaneously active at time T is hence given by

1 2

32
4

( )( ), ( ) ( )
6 2AL AL

Q TQ TP P T Q T= + +            	          Equation 5

Then the joint entropy Ent(AL1, AL2) is given by the following 
Equation 6

Ent(AL1, AL2) =  ̠  fT00log(fT00) ̠   fT01log(fT01) ̠   fT10log(fT10)  
˗ fT11log(fT11)

By definition of entropy, one has also 	         Equation 7

Ent(AL1) = Ent(AL2) =  ˗ PAL₁ (T) log(PAL₁ (T)) ˗ (1  ˗ PAL₁ (T)) 

log(1 ˗ PAL₁ (T))

The mutual information MutInf AL₁,AL₂ (T) between the random 
activations of AL1 and AL2 can then be computed by  

MutInf AL₁,AL₂ (T)  = 2 Ent(AL₁) ˗ Ent (AL1,AL2)			
Equation 8           

The equations 4,5,6,7,8 clearly express MutInf AL₁, AL₂ (T) 
in terms of the 5 observed activations frequencies Q0(0), 
Q1(0), Q2(0), Q3(0), Q4(0). Due to the full symmetry of joint 
probability FT, the mutual information MutInf AL₁, AL₂ (T) will 
be the same for all pairs of alleles (ALi, ALj) and this common 
value quantifies the average amount of activation dependency 
between pairs of alleles at time T.

7. Modeling the time course of GREB1 transcription
frequencies observed at population level:

Since genes transcriptions are strongly decorrelated from 
cell to cell, the random transcription bursts occurring among 
(for instance) the 400 cells of population pop(T) will be 
highly de-synchronized.  Hence, averaging the random bursts 
that actual occur at fixed time T will clearly smooth out the 
impact of random bursts on the allele activation frequencies 
Qk(T), observed across pop(T). We have validated this point 
by simulations of 400 two-states stochastic models of GREB1 
transcription in single cells, and averaging at each time T the 
nascent mRNA outputs of these independent 400 models. As 
expected, in population averaged transcription activity, short 
transcription bursts were essentially no longer identifiable. 
So, to emulate the time course of our population averaged 
GREB1 transcription data, we have introduced a population 
level stochastic model. 

In this simplified model successive GREB1 transcriptions 
are initialized at random times t1 < t2 < … < tn. Each initialized 
transcription launches the elongation of a GREB1 mRNA 
molecule at fixed linear speed and is completed after a fixed 
Mean Transcription Duration MTD which for GREB1 is ≈ 
44 min.  The time intervals (tk+1 ˗ tk are random and assumed 
to be independent and to have the same exponential density 
with unknown mean value A. The successive occurrences tk 
of transcription initializations define then a Poisson stochastic 
process.  The complete nascent mRNA ʺnaskʺ generated by 
GREB1 transcription started at time tk will then become fully 
visible at time (tk + MTD). Both exonic and intronic parts 
of nask, denoted exonask and intnask, are naturally assumed 
to have exponential decay. The mean half-life of exonask is 
about 3 hrs, and hence does not impact the visibility of nask 
during the time-course 90min of E2 treatment. However, the 
mean lifetime of intronic intnask  is known to be shorter than 
≈ 35 min, and hence directly affects the first visibility time of 
nask. The random lifetime of intnask from completion of naskto 
nearly full decay of intnask is assumed to have an exponential 
density with unknown fixed mean {Our population level 
stochastic model thus has only 3 key parameters {A, L, 
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MTD}. But to take into account the limits imposed by image 
resolution, we introduce another integer valued parameter, 
the unknown Visibility Threshold VTH such that nascent 
mRNA spots are detectable only if they contain at least VTH 
molecules (after simulations outlined below, we obtained the 
estimate VTH = 2).

Our population level model is easy to simulate, and we 
have fitted its 4 parameters {A+, A, L, MTD, VTH} to each 
FV+E2 experiment by intensive simulations as outlined 
below. For E2 experiments with no FV pre-treatments, we 
must take account of actual GREB1 transcription activity 
occurring at low frequency in our cell populations during the 
last hour before the time T= 0 of E2 treatment. This requires 
the introduction of another parameter, namely the mean 
waiting time A+  between successive transcription initiations 
occurring before time T = 0.

8. Simulations and model fitting:
To fit our stochastic population level model to

experimental data we performed intensive simulations to 
select the parameters {A+, A, L, MTD, VTH} providing the 
best quality of fit to our smFISH image data. These parameters 
were constrained to have naturally pre-defined ranges:

- mean transcription duration MTD: 40min <  MTD  <
50 min since RNA Polymerase II speed ≈ 2.5 kb /min and 
GREB1 length ≈110 kb

- mean lifetime L of nascent mRNAs: 5min < L < 35 min,
based on actinomycin D pulse-chase experiments

- mean waiting time A between rounds of transcription
after T = 0: 5min < A < 35 min,    based upon the on/off time 
ranges evaluated in (2)

- mean waiting time A+ > A between rounds of
transcription before = 0: A+ < 60 min, based upon analysis 
of initial activations frequencies Q0(0), Q1(0), Q2(0), Q3(0), 
Q4(0). Note: A+ is used only for experiments with no FV 
pretreatment.

The minimum number VTH of molecules needed 
for reliable detection of nascent mRNA spots had to be 
crudely pre-calibrated by image analysis. As detailed in 
section MM9 below, and similarly to (2), we calculated the 
integrated intensities of mature, cytoplasmic mRNA spots 
to roughly evaluate the number of molecules per detected 
nascent mRNA spot.  This yielded a rough preliminary range   
1 ≤ VTH ≤ 10 molecules per detectable spot. 

These parameters ranges were discretized into finite grids 
with accuracies of 0.5 min to 1 min for all time variables.  
This gave us a multigrid of roughly 106 possible parameter 
vectors PAR = {A+, A, L, MTD, VTH}. For each potential 
vector PAR, we performed a first set of 1000 simulations of 
our population level model.  Each such simulation outputs a 
random number NAS(T) of nascent mRNAs present at time 
T on a single virtual allele AL1.  Among the 1000 simulated 

NAS (T), we compute the percentage FAL₁ (T) of integers NAS 
(T) which are larger than the visualization threshold VTH.
Then FAL₁ (T) is the model generated frequency of detectable
single allele activations.  For each experiment and each
vector PAR we then evaluate the quality of fit between model
and data by the distance   dist (model, data) = maxover all T │
FAL₁ (T) ˗ PAL₁ (T) │

For the three FV+E2 experiments, the early values PAL₁(0), 
PAL₁(15min), PAL₁ (30min)  were practically 0 up to errors of 
estimations (0.03), and the simulated FAL₁(0), FAL₁(15min), FAL₁ 
(30min) were identically zero since MTD was known to be of 
the order of 44 min.  Therefore, for FV+E2 experiments, the 
distance between model and data was actually replaced by 
dist (model, data) = maxover all T ≥ 45min │FAL₁(T) ˗  PAL₁(T) │

For each experiment, the best choices for the model 
parameters vector PAR are obtained by optimizing the quality 
of fit, i.e. by minimizing the distance dist (model, data). 

We implemented the stochastic simulations of our 
population level model by the following algorithm. We first 
generate the times tk  by standard simulation of the sequence 
of independent random waiting times (tk+1 ̠  tk) having the same 
exponential density with mean A. Elongation of the nascent 
mRNA nask begins at tk and is completed at time (tk + MTD). 

The random lifetime Uk of nask is provided by a separately 
simulated sequence of independent random lifetimes Uk 
having the same exponential density with mean L. Then at 
time T, the number of  present at time T is determined 
by the number of  such that tk + MTD < T < tk + MTD 
+ Uk. This simulation algorithm is naturally faster than
the Gillespie algorithm used for more complex stochastic
models. Our Python simulation code is accessible in the
publicly available software package on GitHub (https://
github.com/smahmoodghasemi/BCM). This "brute force"
approach to model fitting required intensive computing and
was implemented on the "Sabine" multicore computing
center at University of Houston. Once the simulations have
been completed for 106 models, this large set of simulations
outputs can be re-used as a fixed massive lookup table for
all our past or future experiments. After these simulations
were successfully completed, we also outlined a more
efficient computing approach which could be used in similar
explorations for other genes. Namely, one can implement
a multi-scale exploration starting with a cruder grid of
parameters vectors, and then focus on finer mesh grids tightly
centered around promising first level estimates.

9. Estimation of number of molecules within detected 
nascent mRNA spots:

For each nascent mRNA spot ʺnasʺ detected within the 
nuclei present in an image J, we compute the integrated 
exonic intensity EXO (nas) as the sum of image intensities 
EXO(x) over all exonic pixels x of ʺnasʺ.  For each mature 

nask
nask
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mRNA spot "mat" detected within the cytoplasm of all cells 
present in image J, we also compute the integrated exonic 
intensity EXO(mat) as the sum of image intensities EXO(x) 
over all pixels x of ʺmatʺ. We then compute the median MED 
of these integrated intensities EXO(mat) over all mature RNA 
spots detected in image J.  

In the spirit of an approach explored in [2], the number 
MOL(nas) of RNA molecules present within any detected 
nascent mRNA spot ʺnasʺ is crudely estimated by the ratio 
MOL(nas) = EXO (nas) ̸ MED. This can only be a very rough 
calibration of MOL(nas) since the observed EXO(mat) values 
have a high dispersion around their median MED, even at 
fixed time T. Nevertheless, to evaluate reasonable ranges 
for our model parameter VTH (Visualization Threshold) 
on any given image J, we have computed the low quantiles 
for the histogram of all MOL(nas) values extracted by 
computer analysis of image J. These low quantiles identified 
a potential range of 2 to 5 for the minimum number VTH of 
RNA molecules necessary to detect a nascent mRNA spot 
in our images. Since the error margins for these estimates 
were likely to be high, we simply assigned a much wider 
potential range of 1 to 10 for the unknown parameter VTH. 
After fitting of our population level to experimental data, our 
results reported above showed that the best estimate of VTH 
was always VTH = 2.

10. Estimation errors for frequencies Qk(T) and
probabilities PAL₁(T), PAL₁,AL₂(T) :

Tables given above and Table 6 in Supplemental Materials 
display the computed estimation errors for PAL₁(T), dep(T), 
MutInfAL₁,AL₂(T), PAL₁ AL₂(T). Here we outline how these errors 
are computed. Let N(T) = # cells in population pop(T). Use 
shorter notations Qk for Qk(T), PAL₁, for PAL₁ (T), PAL₁,AL₂ for 
PAL₁,AL₂(T). 

Let ΔQk, ΔPAL₁, ΔPAL₁, AL₂ be the corresponding random 
errors of estimation. The 5x5 covariance matrix covQ of the 5 
errors [ΔQ0, ΔQ1,…, ΔQ4] is classically given by (i, j) 

covQ (i, j)  =  cov ([ΔQi, ΔQj ) =  ˗ Qi,Qj ̸ N (T) for all i  ≠ j

covQ (i, i)  = var(ΔQi) = Qi  (1 ─ Qi ) / N(T)

Denote Q the column vector [Q0; Q1 ; …; Q4]  and for any 
matrix H denote Htr the transpose of H. Due to Equations 3 
and 5, the formulas for PAL₁ and PAL₁ AL₂ can be rewritten in 
matrix form as 

PAL₁ = u ⁎ Q and PAL₁ AL₂ = v ⁎ Q               Equation 9

Where u  =  [0,1/4,1/2,3/4,1]  and v  =  [0,0,1/6,1/2,1]
Known statistical formulas then give the variances of 

ΔPAL₁ and ΔPAL₁, AL₂ as var(ΔPAL₁) = u ⁎ covQ ⁎ utr

and var(ΔPAL₁, AL₂) = v ⁎ covQ ⁎ vtr

11. Estimation errors for the dependency ratio dep(T)  =
P AL₁, AL₂ / P AL₁× P AL₂

Due to Equation 9 we have dep(T) = v⁎ Q/(u ⁎ Q)2 
which is a nonlinear function K (Q) of Q. The variance of 
the random error Δdep(T) in the estimation of dep(T) is then 
classically given by var[Δdep(T)] = w ⁎ covQ ⁎ wtr where 
w is the gradient of K (Q) with respect to Q. This gradient 
is given by w = (1/u ⁎ Q)2  ⁎ v ˗ 2[v ⁎ Q/(u ⁎ Q)3]⁎ u which 
completes the computation of var [Δdep(T)].

12. Estimation errors for the mutual information MutInf
AL₁, AL₂ (T)

At any given time T, the pair of alleles (AL₁, AL₂) can be 
in one of their four joint activation states (00), (01), (10), 
(11) with corresponding joint probabilities given above by
Equation 4. These formulas can be rewritten in matrix form
as
fT00   =   V00 ⁎ Q, fT01 = V01 ⁎ Q, fT 10 = V10 ⁎ Q, fT11 = 
V11 ⁎ Q

where the line vectors Vij are given by

V00 =   [1,1/2,1/6,0,0], V01 = V10  =  [0,1/4,1/3, 1/4, 0], V11 
= [0,0,1/6,1/2,1],

The entropies E = Ent (AL₁) = Ent (AL2) and E12 = Ent (AL₁, 
AL2) are given by

E = ─ PAL₁ (T) log (PAL₁ (T)) ─   (1 ─   PAL₁ (T)) log (1 ─   PAL₁ 
(T))
E12  =  ─ fT 00 log (fT00)  ─  fT  01 log (fT01)  ─  fT  10 log(fT10)  
─  fT 11 log  (fT11)

which can be rewritten as 

E = ─ (u ⁎ Q) log (u ⁎ Q) ─   (1   ─   u ⁎ Q) log ((1   ─   u ⁎ Q)
E12 = ˗ [(V11 ⁎ Q) log (V11 ⁎ Q) + (V00 ⁎ Q) log (V00⁎ Q) +   
2(V10 ⁎ Q) log (V10 ⁎ Q)]

The information M = MutInf AL₁ AL₂ (T) is then given by M 
= 2E ─ E12 which is a non linear function M = G (Q). The 
random estimation error ΔM on M has variance var (ΔM) 
which can be computed as above using the gradient grad (G) 
of the function G (Q) with respect to Q. We have the classical 
formula 

var (ΔM)   = grad (G) ⁎ covQ ⁎ grad (G)tr

Since grad (G) = 2grad (E) ─ grad (E12), we compute the 
gradients of E and E12from the preceding formulas to get 

grad (E) = [─ log (u  ⁎  Q)  +  log (1 ─ u  ⁎  Q) ] ⁎ u

grad (E12) =  ˗ [1 + log(V11 ⁎ Q)] ⁎ V11 ˗ [1+ log(V00 ⁎ 
Q)] ⁎ V00 ˗ 2 [1+ log(V10 ⁎ Q)] ⁎ V10

This clearly completes the computation of var(ΔM).
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Supplementary Materials: Algorithmics and Tables: 

Supplementary Material 0: Tables for observed frequencies 𝑸𝑸𝟎𝟎(𝑻𝑻) 𝑸𝑸𝟏𝟏(𝑻𝑻) 𝑸𝑸𝟐𝟐(𝑻𝑻) 𝑸𝑸𝟑𝟑(𝑻𝑻) 𝑸𝑸𝟒𝟒(𝑻𝑻) 

For each one of our 6 experiments, image analysis at time T yields five key frequencies 𝑄𝑄𝑗𝑗(𝑇𝑇). In cell population 

𝑝𝑝𝑝𝑝𝑝𝑝(𝑇𝑇), 𝑄𝑄𝑗𝑗(𝑇𝑇) is the frequency of nuclei exhibiting exactly “𝑗𝑗” detected GREB1 nascent mRNA spots.  

For two E2 experiments and two FV+E2 experiments, we display here the observed values of the 𝑄𝑄𝑗𝑗(𝑇𝑇), listed as 

percentages.  Similar results hold for our two other experiments.  

Since 𝑝𝑝𝑝𝑝𝑝𝑝(𝑇𝑇) has size 𝑁𝑁(𝑇𝑇)  ≥  400 cells, the estimation error on each 𝑄𝑄𝑗𝑗(𝑇𝑇) is less than 1
2√400 =  2.5%. 

E2 experiment #1 
T in 

minutes 𝑇𝑇 = 0 𝑇𝑇 = 15 𝑇𝑇 = 30 𝑇𝑇 = 45 𝑇𝑇 = 60 𝑇𝑇 = 75 𝑇𝑇 = 90 

𝑄𝑄0(𝑇𝑇) 77 67.3 53.5 39.6 30 26 22 

𝑄𝑄1(𝑇𝑇) 15 17.8 19.8 19.8 18 17 16 

𝑄𝑄2(𝑇𝑇) 5 9.9 15.8 19.8 21 19 18 

𝑄𝑄3(𝑇𝑇) 2 4 7.9 13.9 20 22 24 

𝑄𝑄4(𝑇𝑇) 1 1 3 6.9 11 16 20 

E2 experiment #2 
T in 

minutes 𝑇𝑇 = 0 𝑇𝑇 = 15 𝑇𝑇 = 30 𝑇𝑇 = 45 𝑇𝑇 = 60 𝑇𝑇 = 75 𝑇𝑇 = 90 

𝑄𝑄0(𝑇𝑇) 45.5 37.6 31 26 19.8 14 11.9 

𝑄𝑄1(𝑇𝑇) 25.7 23.8 20 15 13.9 13 9.9 

𝑄𝑄2(𝑇𝑇) 14.9 18.8 20 19 19.8 20 18.8 

𝑄𝑄3(𝑇𝑇) 9.9 13.9 18 21 23.8 29 30.7 

𝑄𝑄4(𝑇𝑇) 4 5.9 11 19 22.8 24 28.7 

FV+E2 experiment #4 
T in 

minutes 𝑇𝑇 = 0 𝑇𝑇 = 15 𝑇𝑇 = 30 𝑇𝑇 = 45 𝑇𝑇 = 60 𝑇𝑇 = 75 𝑇𝑇 = 90 

𝑄𝑄0(𝑇𝑇) 91 85.9 78 59 32.3 18 13.9 

𝑄𝑄1(𝑇𝑇) 6 10.1 13 15 15.2 13 9.9 

𝑄𝑄2(𝑇𝑇) 3 4 6 10 16.2 18 16.8 

𝑄𝑄3(𝑇𝑇) 0 0 2 10 20.2 27 29.7 

𝑄𝑄4(𝑇𝑇) 0 0 1 6 16.2 24 29.7 

http://


Ghasemi SM, et al., J Bioinform Syst Biol 2024 
DOI:10.26502/jbsb.5107084

Citation: S.Mahmood Ghasemi, Pankaj Singh K, Hannah Johnson L, Ayse Koksoy, Michael Mancini A, Fabio Stossi and Robert Azencott. Analysis 
and Modeling of Early Estradiol-induced GREB1 Single Allele Gene Transcription at the Population Level. Journal of Bioinformatics 
and Systems Biology. 7 (2024): 108-128.

Volume 7 • Issue 2 126 

J Bioinform Syst Biol 2023; 6 (1): xxx DOI:10.26502/jbsb.51070xx

FV+E2 experiment #5 
T in 

minutes 𝑇𝑇 = 0 𝑇𝑇 = 15 𝑇𝑇 = 30 𝑇𝑇 = 45 𝑇𝑇 = 60 𝑇𝑇 = 75 𝑇𝑇 = 90 

𝑄𝑄0(𝑇𝑇) 90.1 88 84.7 71.7 41.6 23 23.8 

𝑄𝑄1(𝑇𝑇) 7.9 10 12.2 12.1 13.9 14 11.9 

𝑄𝑄2(𝑇𝑇) 2 2 2 6.1 14.9 19 15.8 

𝑄𝑄3(𝑇𝑇) 0 0 1 6.1 15.8 22 23.8 

𝑄𝑄4(𝑇𝑇) 0 0 0  4  13.9  22 24.8 

Supplementary Materials 1: Linear constraints on the average probability of joint alleles activations For any 

fixed nucleus 𝑁𝑁𝑁𝑁𝑁𝑁𝒏𝒏 of the population 𝑝𝑝𝑝𝑝𝑝𝑝(𝑇𝑇), each allele 𝐴𝐴𝐴𝐴𝑗𝑗, 𝑗𝑗 = 1,2,3,4 can either be active (state "1") or not 

(state "0").  There are 16 joint alleles states for 𝐴𝐴𝐴𝐴1, 𝐴𝐴𝐴𝐴2, 𝐴𝐴𝐴𝐴3, 𝐴𝐴𝐴𝐴4 naturally indexed by the first 16 binary numbers 

as follows   

𝑆𝑆0 =  0000 , 𝑆𝑆1 =  0001 , 𝑆𝑆2  =  0010, . . . ., 𝑆𝑆15  =  1111  
Denote 𝑞𝑞𝒌𝒌,𝒏𝒏  the probability that 𝑁𝑁𝑁𝑁𝑁𝑁𝒏𝒏  exhibits exactly 𝑘𝑘  activation spots at time T, and let 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝒏𝒏 . be the joint 

probability of alleles activations in 𝑁𝑁𝑁𝑁𝑁𝑁𝒏𝒏; we then have the basic probabilistic relations  

𝑞𝑞𝟎𝟎,𝒏𝒏  =  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝒏𝒏(0000) 

𝑞𝑞𝟏𝟏,𝒏𝒏 =  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝒏𝒏(1000)  +  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝒏𝒏(0100)  +  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝒏𝒏(0010)  +   𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝒏𝒏(0001) 

𝑞𝑞𝟐𝟐,𝒏𝒏  =  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝒏𝒏(1100)  + 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝒏𝒏(1010)  +  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝒏𝒏(1001)  +  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝒏𝒏(0110)  + 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝒏𝒏(0101)  +  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝒏𝒏(0011) 

𝑞𝑞𝟑𝟑,𝒏𝒏  =  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝒏𝒏(1110)  +  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝒏𝒏(0111)  +  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝒏𝒏(1011)  +   𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝒏𝒏(1101) 

𝑞𝑞𝟒𝟒,𝒏𝒏  =  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝒏𝒏(1111) 

Note that 𝑄𝑄𝑘𝑘(𝑇𝑇) is the average of the 𝑞𝑞𝒌𝒌,𝒏𝒏 over all nuclei 𝑁𝑁𝑁𝑁𝑁𝑁𝒏𝒏 in 𝑝𝑝𝑝𝑝𝑝𝑝(𝑇𝑇), and that 𝐹𝐹𝑻𝑻 is also the average of the 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝒏𝒏 over 𝑛𝑛.  After averaging over 𝑛𝑛, the preceding linear relations yield  

Equation S1:  

𝑄𝑄0(𝑇𝑇)  =  𝐹𝐹𝑻𝑻(0000)
𝑄𝑄1(𝑇𝑇)  =  𝐹𝐹𝑻𝑻(1000)  + 𝐹𝐹𝑻𝑻(0100)  + 𝐹𝐹𝑻𝑻(0010)  + 𝐹𝐹𝑻𝑻(0001)

𝑄𝑄2(𝑇𝑇)  = 𝐹𝐹𝑻𝑻(1100)  + 𝐹𝐹𝑻𝑻(1010)  + 𝐹𝐹𝑻𝑻(1001)  + 𝐹𝐹𝑻𝑻(0110)  + 𝐹𝐹𝑻𝑻(0101)  + 𝐹𝐹𝑻𝑻(0011)
𝑄𝑄3(𝑇𝑇)  =  𝐹𝐹𝑻𝑻(1110)  + 𝐹𝐹𝑻𝑻(0111)  + 𝐹𝐹𝑻𝑻(1011)  + 𝐹𝐹𝑻𝑻(1101)

𝑄𝑄4(𝑇𝑇)  =  𝐹𝐹𝑻𝑻(1111)
Supplementary Materials 2: Impact of independence on probabilities of joint alleles activations 

Fix the time T. Under the average probability 𝐹𝐹𝑻𝑻 of joint alleles activations just defined, let 𝑓𝑓𝑗𝑗 be the probability that 

allele 𝐴𝐴𝐴𝐴𝑗𝑗 is activated at time T. Then ℎ𝑗𝑗  =  1 − 𝑓𝑓𝑗𝑗 is the frequency of non-activation for 𝐴𝐴𝐴𝐴𝑗𝑗. Assume temporarily 

that under the joint probability 𝐹𝐹𝑻𝑻 , the random activations of 𝐴𝐴𝐴𝐴1, 𝐴𝐴𝐴𝐴2, 𝐴𝐴𝐴𝐴3, 𝐴𝐴𝐴𝐴4  are independent. For any joint 

activation state (𝑏𝑏1  𝑏𝑏2  𝑏𝑏3 𝑏𝑏4), where each 𝑏𝑏𝑘𝑘  =  0 𝑜𝑜𝑜𝑜 1, independence of alleles activations implies  

𝐹𝐹𝑻𝑻(𝑏𝑏1 𝑏𝑏2 𝑏𝑏3 𝑏𝑏4)  =  𝑣𝑣1 𝑣𝑣2 𝑣𝑣3 𝑣𝑣4  ,     where 𝑣𝑣𝑗𝑗  =  𝑓𝑓𝑗𝑗    if     𝑏𝑏𝑗𝑗  = 1 ,    and 𝑣𝑣𝑗𝑗  =  ℎ𝑗𝑗     if   𝑏𝑏𝑗𝑗  = 0 

Combining these product formulas with the linear relations of equation S1 proves that the nuclei activation 

frequencies 𝑄𝑄𝑘𝑘  =  𝑄𝑄𝑘𝑘(𝑇𝑇) must verify the five formulas    
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𝑄𝑄4 =  𝑓𝑓1𝑓𝑓2𝑓𝑓3𝑓𝑓4 
𝑄𝑄3 =  𝑓𝑓1𝑓𝑓2𝑓𝑓3ℎ4  + 𝑓𝑓1𝑓𝑓2ℎ3𝑓𝑓4  + 𝑓𝑓1ℎ2𝑓𝑓3𝑓𝑓4  + ℎ1𝑓𝑓2𝑓𝑓3𝑓𝑓4 
𝑄𝑄2 =  𝑓𝑓1𝑓𝑓2ℎ3ℎ4  + 𝑓𝑓1ℎ2𝑓𝑓3ℎ4  + 𝑓𝑓1ℎ2ℎ3𝑓𝑓4  + ℎ1𝑓𝑓2𝑓𝑓3ℎ4  + ℎ1𝑓𝑓2ℎ3𝑓𝑓4  + ℎ1ℎ2𝑓𝑓3𝑓𝑓4

𝑄𝑄1 = ℎ1ℎ2ℎ3𝑓𝑓4  + ℎ1ℎ2𝑓𝑓3ℎ4  + ℎ1𝑓𝑓2ℎ3ℎ4  + 𝑓𝑓1ℎ2ℎ3ℎ4

𝑄𝑄0  =  ℎ1ℎ2ℎ3ℎ4 
Divide the first four of these equations by the last one and set 𝑧𝑧𝑗𝑗 =  𝑓𝑓𝑗𝑗 / ℎ𝑗𝑗 for 𝑗𝑗 = 1, 2 , 3 , 4, to obtain 

𝑄𝑄4
𝑄𝑄0

  =  𝑧𝑧1𝑧𝑧2𝑧𝑧3𝑧𝑧4

𝑄𝑄3
𝑄𝑄0

 =  𝑧𝑧1𝑧𝑧2𝑧𝑧3 + 𝑧𝑧1𝑧𝑧2𝑧𝑧4  +  𝑧𝑧1𝑧𝑧3𝑧𝑧4  + 𝑧𝑧2𝑧𝑧3𝑧𝑧4 

𝑄𝑄2
𝑄𝑄0

 =  𝑧𝑧1 𝑧𝑧2  +  𝑧𝑧1 𝑧𝑧3  +  𝑧𝑧1 𝑧𝑧4  +  𝑧𝑧2 𝑧𝑧3  +  𝑧𝑧2 𝑧𝑧4  +  𝑧𝑧3 𝑧𝑧4

𝑄𝑄1
𝑄𝑄0

 =  𝑧𝑧1 + 𝑧𝑧2 + 𝑧𝑧3  + 𝑧𝑧4

These formulas classically imply that 𝑧𝑧1, 𝑧𝑧2, 𝑧𝑧3, 𝑧𝑧4 must be the four roots of the polynomial equation  

𝑅𝑅(𝑧𝑧) = 𝑄𝑄0 𝑧𝑧4  − 𝑄𝑄1 𝑧𝑧3  + 𝑄𝑄2 𝑧𝑧2   −  𝑄𝑄3 𝑧𝑧  +  𝑄𝑄4 =  0     
Hence independence of allele activations under the joint probability 𝐹𝐹𝑻𝑻 forces the polynomial 𝑅𝑅(𝑧𝑧) to have four 

positive real valued solutions 𝑧𝑧1𝑧𝑧2𝑧𝑧3𝑧𝑧4.  

The relations 𝑧𝑧𝑗𝑗 =  𝑓𝑓𝑗𝑗
ℎ𝑗𝑗

=  𝑓𝑓𝑗𝑗
1−𝑓𝑓𝑗𝑗

 then imply that the unknown probabilities 𝑓𝑓1 , 𝑓𝑓2, 𝑓𝑓3 , 𝑓𝑓4 are given by 

𝑓𝑓𝑗𝑗  =  𝑧𝑧𝑗𝑗 /(1 + 𝑧𝑧𝑗𝑗), 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 =  1, 2, 3, 4.  

The independence of alleles activations thus requires the polynomial 𝑅𝑅(𝑧𝑧) to have all its roots real and positive, a 

condition which imposes very restrictive polynomial constraints on the 5 observed frequencies 𝑄𝑄𝑗𝑗(𝑇𝑇) for each time 

T. In particular, each one of the 10 pairs 𝑄𝑄𝑖𝑖(𝑇𝑇), 𝑄𝑄𝑗𝑗(𝑇𝑇) with 𝑖𝑖 <  𝑗𝑗 must verify very specific polynomial inequalities.

For instance, the pairs 𝑄𝑄3, 𝑄𝑄4 and 𝑄𝑄1, 𝑄𝑄0 must verify

𝑄𝑄3  ≥  4 (𝑄𝑄4
3/4  − 𝑄𝑄4) 𝑎𝑎𝑎𝑎𝑎𝑎  𝑄𝑄1  ≥  4 (𝑄𝑄0

3/4  − 𝑄𝑄0). 
In all our experiments and at all positive times T, the polynomial 𝑅𝑅(𝑧𝑧) with coefficients 𝑄𝑄0(𝑇𝑇), . . . , 𝑄𝑄4(𝑇𝑇) derived

for image analysis of smFISH data actually did NOT have four positive and real valued roots. This led us to reject

the alleles independence hypothesis for the population average probability 𝐹𝐹𝑻𝑻 of joint alleles activations

Supplementary Material 3: Maximum Entropy under Constraints  

Fix time T and denote F for short the probability 𝐹𝐹𝑻𝑻  =  [ 𝐹𝐹0 𝐹𝐹1  … 𝐹𝐹15] on the finite state space 𝑆𝑆 =  [𝑆𝑆0, . . . , 𝑆𝑆15] of 

joint alleles activations. The entropy 𝐸𝐸𝐸𝐸𝐸𝐸(𝐹𝐹) is given by        

𝐸𝐸𝐸𝐸𝐸𝐸(𝐹𝐹)  =    − 𝐹𝐹0 𝑙𝑙𝑙𝑙𝑙𝑙(𝐹𝐹0)  − 𝐹𝐹1 𝑙𝑙𝑙𝑙𝑙𝑙 (𝐹𝐹1)  − … . − 𝐹𝐹15 𝑙𝑙𝑙𝑙𝑙𝑙 (𝐹𝐹15). 

The five frequencies 𝑄𝑄𝑗𝑗  =  𝑄𝑄𝑗𝑗(𝑇𝑇) are known and fixed. We know that F must verify the 5 linear relations given by 

equation S1, which can be rewritten with more compact notations as   

Equation S2  

𝑄𝑄0  =  𝐹𝐹0
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𝑄𝑄1  =  𝐹𝐹8  + 𝐹𝐹4  + 𝐹𝐹2  + 𝐹𝐹1 
𝑄𝑄2  =  𝐹𝐹12  + 𝐹𝐹10  + 𝐹𝐹9  +  𝐹𝐹6  +  𝐹𝐹5  + 𝐹𝐹3

𝑄𝑄3  =  𝐹𝐹14  + 𝐹𝐹13  + 𝐹𝐹11  +  𝐹𝐹7 
𝑄𝑄4  =  𝐹𝐹15

To seek a probability 𝐹𝐹 maximizing 𝐸𝐸𝐸𝐸𝐸𝐸(𝐹𝐹) under the 5 linear constraints of equation 2, and the linear relation 

{𝐹𝐹0 + . . . + 𝐹𝐹15 =  1} , we introduce 6 Lagrange multipliers 𝐿𝐿1 . . .  𝐿𝐿6 . The partial derivative 𝐷𝐷𝑚𝑚  of 𝐸𝐸𝐸𝐸𝐸𝐸(𝐹𝐹)  with 

respect to 𝐹𝐹𝑚𝑚  is equal to [ −1 −  𝑙𝑙𝑙𝑙𝑙𝑙(𝐹𝐹𝑚𝑚) ]  . The 16 classical Lagrange conditions for optimization under 

constraints are then   

𝐷𝐷0  =  𝐿𝐿0  + 𝐿𝐿6;  
𝐷𝐷1 =  𝐷𝐷2  =  𝐷𝐷4  =  𝐷𝐷8  =  𝐿𝐿1  + 𝐿𝐿6;
𝐷𝐷12  =  𝐷𝐷10  =  𝐷𝐷9  =  𝐷𝐷6  =  𝐷𝐷5  =  𝐷𝐷3  =  𝐿𝐿2  + 𝐿𝐿6

𝐷𝐷7 =  𝐷𝐷11 =  𝐷𝐷13  =  𝐷𝐷14  =  𝐿𝐿3  + 𝐿𝐿6

𝐷𝐷15  =  𝐿𝐿4 + 𝐿𝐿6

Since 𝐷𝐷𝑚𝑚  =  −1 −  𝑙𝑙𝑙𝑙𝑙𝑙(𝐹𝐹𝑚𝑚) the 5 preceding equations show that  

𝐹𝐹1  =  𝐹𝐹2  =  𝐹𝐹4  =  𝐹𝐹8  
𝐹𝐹3 =  𝐹𝐹5 =  𝐹𝐹6  =  𝐹𝐹9  =  𝐹𝐹10 =  𝐹𝐹12

𝐹𝐹7 =  𝐹𝐹11 =  𝐹𝐹13 =  𝐹𝐹14

Reporting these equalities in Equation S2 yields directly  

𝐹𝐹0  =  𝑄𝑄0 
𝐹𝐹1  =  𝐹𝐹2  =  𝐹𝐹4  =  𝐹𝐹8  =  𝑄𝑄1 / 4 
𝐹𝐹3 =  𝐹𝐹5 =  𝐹𝐹6  =  𝐹𝐹9  =  𝐹𝐹10 =  𝐹𝐹12 =  𝑄𝑄2 /6 
𝐹𝐹7 =  𝐹𝐹11 =  𝐹𝐹13 =  𝐹𝐹14 =  𝑄𝑄3 / 4
𝐹𝐹15  =  𝑄𝑄4 
This fully determines 𝐹𝐹 =  𝐹𝐹𝑇𝑇 , and also proves that 𝐹𝐹𝑇𝑇  has maximum symmetry, i.e., is unchanged by any 

permutation of the alleles 𝐴𝐴𝐴𝐴1, 𝐴𝐴𝐴𝐴2, 𝐴𝐴𝐴𝐴3, 𝐴𝐴𝐴𝐴4. Indeed, the preceding expressions obtained for the probability 𝐹𝐹 =  𝐹𝐹𝑇𝑇 

can be rewritten 

Equation S3 

𝐹𝐹𝑻𝑻 (0000)  =  𝑄𝑄𝟎𝟎(𝑇𝑇) 
𝐹𝐹𝑻𝑻 (0001)  =  𝐹𝐹𝑻𝑻 (1000)  =  𝐹𝐹𝑻𝑻 (0100)  =  𝐹𝐹𝑻𝑻 (0010)  =  𝑄𝑄𝟏𝟏(𝑇𝑇) / 4   
𝐹𝐹𝑻𝑻 (1100)  =  𝐹𝐹𝑻𝑻 (1010)  =  𝐹𝐹𝑻𝑻 (1001)  =  𝐹𝐹𝑻𝑻 (0110)  =  𝐹𝐹𝑻𝑻 (0101)  =  𝐹𝐹𝑻𝑻 (0011)  =  𝑄𝑄𝟐𝟐(𝑇𝑇) /6 
𝐹𝐹𝑻𝑻 (1110)  =  𝐹𝐹𝑻𝑻 (0111)  =  𝐹𝐹𝑻𝑻 (1011)  =  𝐹𝐹𝑻𝑻 (1101)  =  𝑄𝑄𝟑𝟑(𝑇𝑇) / 4    
𝐹𝐹𝑻𝑻(1111)  =  𝑄𝑄𝟒𝟒  (𝑇𝑇)
Due to the maximum symmetry of 𝐹𝐹𝑇𝑇, the probability 𝑃𝑃𝑨𝑨𝑨𝑨𝟏𝟏(𝑇𝑇) that allele 𝐴𝐴𝐴𝐴1 is active at time T has the same value 

for all 4 alleles. By definition 𝑃𝑃𝐴𝐴𝐴𝐴1(𝑇𝑇) is given by the sum  

𝑃𝑃𝑨𝑨𝑨𝑨𝟏𝟏(𝑇𝑇) = 𝐹𝐹𝑻𝑻(0100) + 𝐹𝐹𝑻𝑻(1100) + 𝐹𝐹𝑻𝑻(0110) + 𝐹𝐹𝑻𝑻(0101) + 𝐹𝐹𝑻𝑻(1110) + 𝐹𝐹𝑻𝑻(0111) + 𝐹𝐹𝑻𝑻(1101)  + 𝐹𝐹𝑻𝑻(1111) 

The explicit formulas S3 just obtained for FT yield then  

𝑃𝑃𝑨𝑨𝑨𝑨𝟏𝟏(𝑇𝑇)   =  𝑄𝑄𝟏𝟏(𝑇𝑇)
4  + 𝑄𝑄𝟐𝟐(𝑇𝑇)

2  +  3𝑄𝑄𝟑𝟑(𝑇𝑇)
4   +  𝑄𝑄𝟒𝟒(𝑇𝑇)

A similar computation provides the joint probability 𝑃𝑃𝐴𝐴𝐴𝐴1,𝐴𝐴𝐴𝐴2(𝑇𝑇) as was outlined in “Methods”. 
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