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Abstract
Background and objectives: Microarray and RNA-Seq for gene 
expression analysis often generate expression matrix of very high 
dimension. In biomarker discovery study, a small set of important genes 
is the objective for data analysis and discovery. Innovative and effective 
gene discovery algorithm is always desirable. In this study we introduced 
a novel gene expression modeling algorithm, called Recursive Linear 
Modeling (RLM). By combining single-variate analysis and RLM for 
peripheral blood mononuclear cells (PBMC) gene expression analysis, we 
established and validated two prediction models for alzheimer’s disease 
(AD) and mild cognitive impairment (MCI) diagnosis.

Methods: Publicly available PBMC gene expression data sets for AD/
MCI were used to develop and demonstrate the algorithm. By comparing 
the AD/MCI group to the healthy control (HC) group respectively, firstly, 
each gene was analyzed as a single-variate predictor using ROC (receiver 
operating characteristic), and a heuristic gene candidate set was selected 
from the top according to AUC (area under the curve) in the decreasing 
order. Secondly, for a given model size (number of genes in a model), the 
candidate set was searched by a recursive linear modeling procedure. At 
last, an optimal model size and the corresponding model was determined 
by the maximal R-square among all sizes.

Results: An AD prediction 30 gene model was established and validated 
with high specificity and sensitivity: SS18L2, ATP6V1G1, GIMAP7, 
OSBPL1A, C14orf166, UQCRH, USP3, STAT6, MFSD10, HELZ, 
FLT3, CBX7, PEPD, FGF7, ESD, REST, TM9SF3, ZNF264, LPAR1, 
CTGF, EML4, BTBD10, MED31, FCGRT, TAF12, SEC11C, FCER2, 
FASTKD2, RPS27A, RPS27. Its model building AUC is 0.98 and the 
validation AUC is 0.93; In parallel, an MCI prediction 23 gene model of 
similar performance was also established and validated: ULK1, UBL3, 
TPST2, EEF1A1, FAM21A, RAN, LCOR, NOD1, OSBPL1A, SARS, 
PAQR4, EGFL6, RPS23, SDHB, TFB1M, ZNF416, TRIP11, SEC22B, 
SELK, SDHC, SIPA1, ZSCAN21, OSGEPL1.  Its model building AUC is 
0.96 and the validation AUC is 0.88. The models may be used to develop 
accurate AD/MCI clinical diagnosis and early risk assessment. 

Conclusions: A novel feature selection and model building method by 
combining single-variate analysis using ROC and recursive linear modeling 
was developed and its application to AD/MCI prediction based on PBMC 
expression data showed great accuracy. The method is very general and 
can be used to build models for other gene expression biomarker discovery 
studies.
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Introduction
Alzheimer’s Disease (AD) is a progressive 

neurodegenerative disease that mainly affects the elderly and 
seriously impairs their quality of life. In recent years, the 
number of people affected has rapidly increased, with over 
10% of elderly people aged 65 or above suffering from AD. 
Due to the aging trend of society, AD has become one of 
the fastest-growing causes of death. It is estimated that by 
2050, up to 100 million elderly people worldwide will be 
affected. In China, according to data from the National Health 
Commission, the prevalence of Alzheimer’s disease is 5.56%. 
There are approximately 15 million dementia patients among 
the elderly aged 60 and above, of which 10 million are AD. 
Mild Cognitive Impairment (MCI) is an intermediate state 
between normal aging and dementia, which involves one or 
more aspects such as memory, language, and judgment, leading 
to corresponding clinical symptoms, but daily abilities are not 
significantly affected. MCI may be caused by early AD. The 
symptoms of MCI may stabilize for several years or develop 
into AD or other types of dementia. In some cases, MCI may 
improve over time. At present, the diagnostic guidelines for 
AD recommend four aspects: 1. Medical history and clinical 
manifestations: early symptoms include decreased memory 
and lack of concentration; 2. Neuropsychological testing: 
using standard cognitive tests such as Mini Mental State 
Examination (MMSE); 3. Imaging examination: brain MRI or 
CT scan to exclude other causes; 4. Laboratory examination: 
Blood and urine tests exclude other causes. The secondary 
criteria involve recent immunological diagnostic methods, 
such as increased tau protein concentration in cerebrospinal 
fluid (CSF) The concentration of amyloid protein decreases, 
etc. Peripheral blood biomarkers also include tau protein and 
Amyloid protein. Traditional diagnosis of AD requires the 
condition to develop to an observable level, with invasive 
cerebrospinal fluid examination, peripheral blood tau protein, 
and The immuno-diagnostic method for amyloid protein 
has only recently begun, and its stability and accuracy still 
need to be verified. The diagnosis of MCI also includes four 
aspects: first, the patient complained of decreased memory, 
lack of concentration, and impact on daily life. 2. Physical 
examination and neurological assessment: exclude the 
possibility of other neurological diseases, such as Parkinson’s 
disease, Huntington’s disease, etc. 3. Cognitive assessment: 

Using standardized cognitive assessment tools to assess 
the cognitive function of patients. 4. Activity restriction 
assessment: Assess the patient’s daily living ability and 
degree of activity restriction. It can be seen that the diagnosis 
of MCI is more likely to be subjective.

Due to the advancement of microarray and NGS (next 
generation sequencing) technology, molecular diagnostic 
methods based on multigene expression analysis have been 
explored extensively for biomarker discovery. It can also 
provide new diagnostic methods that complement the above 
AD diagnostic criteria and provide more accurate early 
diagnostic tools for AD or for MCI.

Materials and Methods
Training and testing data sets The training data 

set GSE63061 and the testing data set GSE63060 were 
downloaded from the Gene Expression Omnibus (GEO). 
GSE63061 contains microarray data of 3 groups of PBMC 
samples from 135 (HC), 140 (AD) and 112 (MCI) subjects; 
GSE63060 contains microarray data of 3 groups of PBMC 
samples from 104 (HC), 145 (AD) and 80 (MCI) subjects. 
Both data sets were pre-processed as follows, at first, a 
normalization procedure was applied to each probe and then 
to each sample. The normalization is a linear map: (Q25, Q75) 
→ (0, 1) where Q25, Q75 are the 25th and 75th percentile 
of a data vector; second, an average was taken with the 
normalized values of the probes mapped to the same gene and 
assigned to the gene; third, genes annotated by gencode.v22.
annotation (https://www.encodeproject.org/files/gencode.
v22.annotation/) as ”protein coding type” were used for the 
analysis. Moreover, genes missing in one of the data sets were 
omitted and therefore the training and the testing data sets 
contained 12235 common genes. In the following, subsets 
containing only HC and AD of both data sets were used for 
AD model building and validating while subsets containing 
only HC and MCI were used for MCI model building and 
validating respectively.

The gene candidate sets determined by ROC Given a 
training data set as defined in the above, for each gene, the 
receiver operating characteristic (ROC) method was applied to 
classify the disease group (either AD or MCI) and the healthy 
group (HC) respectively. A ROC curve was plotted with the 
false positive rate (FPR) as the horizontal axis and the true 
positive rate (TPR) as the vertical axis by running through a 
series of possible expression threshold of the gene. The series 
of threshold was obtained by binning the expression range 
with a fixed step size. At each threshold, label all samples 
below it as 0 and 1 otherwise, and then calculate (FPR, TPR) 
based on the sample truth, AD=1 or MCI=1, and HC=0. 
If a ROC curve for a gene is below the diagonal line, then 
0-expression was used to re-plot the curve, indicating that the 
gene is under-expressed. The AUC (area under the curve) was 

http://www.encodeproject.org/files/gencode.v22.annotation/)
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then calculated. It is worthwhile to note that an optimal cutoff 
is usually set at the position on the ROC curve which is the 
closest to the left-top corner with coordinate (0,1), where FPR 
= 0 and TPR=1, representing the perfect classification. Next 
sort the AUC in the decreasing order so that all genes were 
sorted according to their prediction powers. The sorted AUC 
for AD and MCI are plotted in (Figure 1). The ordered AUC 
trending curves show that the top 5% genes have remarkable 
prediction powers and hence were selected as candidates. The 
95th percentiles of the AUC for AD and MCI is 0.63 and 
0.62 respectively. By choosing genes with AUC greater than 
or equal to the 95th percentiles, we obtained 613 candidate 
genes for AD and 788 candidate genes for MCI. Note that 
there are 330 common genes in both AD and MCI candidate 
sets. By selecting the gene candidates, the gene searching 
universe for modeling is dramatically reduced.

Recursive linear modeling (RLM) A clinically practical 
gene expression assay typically contains a handful to tens 

of genes, hence a heuristic model size should be considered 
likewise. RLM takes a given model size S and searches the 
gene candidate space, denoted as G, to find an optimal linear 
model of size no more than S. G is an ordered gene list with 
decreasing AUCs calculated as in the above. In a typical linear 
regression model, along with each dependent variable there is 
a returned p value, which defines the statistic significance of 
the variable in the model fitting. A threshold p0 is used to 
omit genes with p > p0 and is typically set as 0.05. The genes 
with p ≤ p0 are kept. In more details, in the first round, RLM 
evenly partitions G into disjointed sublists of the equal size S. 
For each sublist, a linear model is built and the genes with p ≤ 
p0 are used to build another linear model, repeat it iteratively 
until all genes in the model have p ≤ p0. Take the union of the 
model genes by this iterative linear modeling method for all 
of the sublists, denoted as the new candidate gene set G, and 
repeat the above procedure recursively until the size of G is 
no more than S, i.e. |G| ≤ S.

Figure 1: Ordered single gene AUC in the decreasing order. The total number of genes is 12235 and the x-axis labels are only for displaying 
purpose. Both plots show that the top 5% genes have remarkable prediction powers and hence were selected as candidates for model building. 
AD: alzheimer’s disease; AUC: area under the curve; HC: healthy control; MCI: mild cognitive impairment.
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Next an optimal model size is searched by running RLM 
through a series of model sizes. The optimal one has the 
highest average R2 among all model sizes. In the current 
implementation, the optimal model size was determined by 
searching model sizes from 10 to 60 for both AD and MCI 
models. This searching range was determined heuristically 
by considering the clinical diagnosis feasibility and the 
prediction power.

Data analysis and software RLM and plots were 
implemented in R scripts. The ROC analysis was based on R 
package ROCR.

Results
The AD linear model and its validation The RLM 

algorithm on the training subset of GSE63061 of the AD and 
the HC samples with 613 candidate genes gave rise to the 30 
gene AD model, consisting of SS18L2, ATP6V1G1, GIMAP7, 
OSBPL1A, C14orf166, UQCRH, USP3, STAT6, MFSD10, 
HELZ, FLT3, CBX7, PEPD, FGF7, ESD, REST, TM9SF3, 
ZNF264, LPAR1, CTGF, EML4, BTBD10, MED31, FCGRT, 
TAF12, SEC11C, FCER2, FASTKD2, RPS27A, RPS27. The 
model coefficients are listed in Table 1. The sample AD 
scores was calculated as the weighted sum of the model gene 
expression values with the corresponding weights (estimates) 
shown in Table 1. The model building ROC using the AD 
score to predict sample groups (AD=1, HC=0) is presented 

in Figure 2. As shown in the figure, the model fits excellently 
with AUC = 0.98, the sensitivity (TPR) is 93%, the specificity 
(1-FPR) is 92% and the accuracy is 92%. Taking the testing 
subset of GSE63060 with the AD and the HC samples, the 
model is validated. The validating ROC is presented in 
Figure 3 which shows that AUC = 0.93, sensitivity = 82%, 
specificity = 87% and accuracy=84%.

The MCI linear model and its validation The RLM 
algorithm on the training subset of GSE63061 of the MCI 
and the HC samples with 788 candidate genes gave rise to 
the 23 gene MCI model consisting of ULK1, UBL3, TPST2, 
EEF1A1, FAM21A, RAN, LCOR, NOD1, OS- BPL1A, SARS, 
PAQR4, EGFL6, RPS23, SDHB, TFB1M, ZNF416, TRIP11, 
SEC22B, SELK, SDHC, SIPA1, ZSCAN21, OSGEPL1. The 
model coefficients are listed in Table 2. The sample MCI 
scores were calculated as the weighted sum of the model gene 
expression values with the corresponding weights (estimates) 
shown in Table 2. The ROC using the MCI score to predict 
sample groups (MCI=1, HC=0) is presented in Figure 4. 
Again, the model fits greatly with AUC = 0.96, the sensitivity 
(TPR) is 88%, the specificity (1-FPR) is 90%, the accuracy 
is 89%. Taking the testing subset GSE63060 of the MCI 
and the HC samples, the model is validated. The validating 
ROC is presented in Figure 5 which shows that AUC = 0.88, 
sensitivity = 84%, specificity = 82%, and accuracy=83%.

varn pv estimate stderr tv rsq
Intercept 0 0.5103 0.0776 6.5795 0.6461
SS18L2 1.00E-04 0.36 0.0892 4.0374 0.6026

ATP6V1G1 2.00E-04 0.3281 0.0866 3.7877 0.6461
GIMAP7 1.00E-04 0.2138 0.0544 3.9297 0.6461

OSBPL1A 2.00E-04 0.1789 0.0466 3.8394 0.6461
C14orf166 0.0091 0.1495 0.0569 2.6281 0.6461
UQCRH 0.0256 0.1403 0.0624 2.2465 0.6461
USP3 6.00E-04 0.1323 0.038 3.4796 0.6461
STAT6 7.00E-04 0.1252 0.0363 3.4519 0.6461

MFSD10 0.0088 0.1064 0.0403 2.6414 0.6461
HELZ 0.0063 0.0983 0.0357 2.7543 0.6461
FLT3 0 0.0978 0.0237 4.1323 0.6461
CBX7 0.0049 0.0903 0.0318 2.8416 0.6461
PEPD 0.0494 0.0779 0.0394 1.9749 0.6461
FGF7 0.0049 0.0677 0.0238 2.839 0.6461
ESD 0.0331 -0.0867 0.0405 -2.1433 0.6461

REST 0.0017 -0.0876 0.0276 -3.1718 0.6461
TM9SF3 0.0318 -0.0885 0.041 -2.1598 0.6461
ZNF264 0.0042 -0.089 0.0308 -2.8864 0.6461
LPAR1 0.0138 -0.0937 0.0378 -2.4804 0.6461
CTGF 0.0073 -0.0945 0.0349 -2.7059 0.6461

Table 1: Coefficients of the 30 gene AD linear model ordered decreasingly by estimate. varn: variable; pv: p value; estimate: 
weight; stderr: standard error; tv: t value; rsq: R2
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EML4 0.0097 -0.1102 0.0423 -2.6076 0.6461
BTBD10 0.0184 -0.1128 0.0475 -2.3737 0.6461
MED31 0.0076 -0.1153 0.0429 -2.6901 0.6461
FCGRT 0.0084 -0.1261 0.0475 -2.656 0.6461
TAF12 7.00E-04 -0.1269 0.0368 -3.4433 0.6461

SEC11C 0.017 -0.1374 0.0572 -2.4029 0.6461
FCER2 0 -0.147 0.0316 -4.6491 0.6461

FASTKD2 0 -0.1604 0.038 -4.2231 0.6461
RPS27A 0 -0.3011 0.0633 -4.7583 0.6461
RPS27 0 -0.3301 0.0765 -4.3146 0.6461

Figure 2: The model building ROC of the 30 gene AD model derived from the RLM procedure. 
AUC = 0.98, at the optimal cutoff (=0.5026) position, the sensitivity (TPR) is 93% and the 
specificity (1-FPR) is 92%. Therefore, the 30 gene AD model is an excellent fit to the training data. 
AD: alzheimer’s disease; AUC: area under the curve; HC: healthy control; MCI: mild cognitive 
impairment. RLM: recursive linear modeling; ROC: receiver operating characteristic.

Comparison with other published methods Lunnon K, 
et. al. [1] presented a 48-gene classifier with an accuracy of 
75% based on PBMC gene expression. Sanjana S, et. al [2] 
reported that the multi-tissue health aging signature has an 
AUC in 0.66-0.73 when being applied to PBMC expression 
data. Cheng L, et al. [3] published an exosome microRNA-
based AD signature with sensitivity 87% and specificity 
77%. Wang H, et. al. [5] used differential expression 
analysis and protein-protein interaction analysis to find an 8 
gene signature: RPS17, RPL26, RPS3A, RPS25, EEF1B2, 
COX7C, HINT1, SNRPG. The AUCs of linear regressions 
with the 8 gene signature are: GSE63060 (AD: 0.88, MCI: 

0.84) and GSE63061 (AD: 0.77, MCI: 0.80). GSE63060 was 
used as one of the training data sets in their analysis and hence 
has a better AUC. Nevertheless, the RLM models for AD 
(AUC: 0.93-0.98) and MCI (AUC: 0.88-0.96) have shown 
better AUCs. Interestingly, our AD and MCI models share no 
common gene with the 8 gene signature. On the other hand, in 
a review by Budelier MM, et. al. [4] on blood-based protein 
biomarkers with various assay techniques, among about 39 
studies, the reported AUC ranged from 0.74 to 0.98, with an 
average of 0.87. Therefore, the 30 gene AD model and the 23 
gene MCI model have a compatible accuracy comparing to 
the plasma protein biomarkers.
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Figure 3: The validating ROC of the 30 gene AD model tested on the subset of GSE63060 with 
the AD and the HC samples.  It shows that AUC = 0.93, sensitivity = 82% and specificity = 87%. 
Therefore the 30 gene AD model is validated. AD: alzheimer’s disease; AUC: area under the curve; 
HC: healthy control; MCI: mild cognitive impairment. ROC: receiver operating characteristic.

varn pv estimate stderr tv rsq
Intercept 0.0126 0.2843 0.113 2.5165 0.5849

ULK1 1.00E-04 0.2107 0.0533 3.9522 0.542
UBL3 0.003 0.1998 0.0665 3.0044 0.5849

TPST2 0 0.1981 0.0411 4.8205 0.5849
EEF1A1 0.0117 0.1844 0.0726 2.5418 0.5849
FAM21A 0 0.1707 0.0387 4.4087 0.5849

RAN 0.0067 0.1599 0.0585 2.7359 0.5849
LCOR 0 0.1571 0.0368 4.2645 0.5849
NOD1 2.00E-04 0.1428 0.0378 3.7768 0.5849

OSBPL1A 0.0093 0.1338 0.051 2.623 0.5849
SARS 0.0036 0.1171 0.0399 2.9396 0.5849

PAQR4 0.0032 0.1082 0.0362 2.9848 0.5849
EGFL6 7.00E-04 0.1017 0.0295 3.4518 0.5849
RPS23 0.0077 -0.0835 0.031 -2.6906 0.5849
SDHB 0.0014 -0.1034 0.032 -3.2364 0.5849
TFB1M 0.0017 -0.1048 0.0329 -3.1846 0.5849
ZNF416 0.0121 -0.1077 0.0426 -2.5297 0.5849
TRIP11 0.0029 -0.1155 0.0383 -3.011 0.5849
SEC22B 7.00E-04 -0.1218 0.0354 -3.4373 0.5849

SELK 0.0016 -0.122 0.0382 -3.1939 0.5849
SDHC 7.00E-04 -0.1615 0.0467 -3.457 0.5849
SIPA1 0.0228 -0.171 0.0746 -2.292 0.5849

ZSCAN21 0 -0.176 0.0399 -4.4144 0.5849
OSGEPL1 3.00E-04 -0.1848 0.0498 -3.711 0.5849

Table 2: Coefficients of the 23 gene MCI linear model ordered decreasingly by estimate. varn: variable; pv: p value; estimate: 
weight; stderr: standard error; tv: t value; rsq: R2
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Figure 4: The model building ROC of the 23 gene MCI model derived from the RLM procedure. 
It shows that AUC = 0.96, with MCI score cutoff = 0.4910, the sensitivity (TPR) is 88% and the 
specificity (1-FPR) is 90%. AD: alzheimer’s disease; AUC: area under the curve; HC: healthy 
control; MCI: mild cognitive impairment. RLM: recursive linear modeling; ROC: receiver 
operating characteristic.

Figure 5: The validating ROC of the 23 gene MCI model tested on the subset of GSE63060 with 
the MCI and the HC samples. It shows that AUC = 0.88, sensitivity = 84% and specificity = 82%. 
Therefore the 23 gene MCI model is validated. AD: alzheimer’s disease; AUC: area under the curve; 
HC: healthy control; MCI: mild cognitive impairment. ROC: receiver operating characteristic.
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Discussion
It is not surprising to find numerous literatures on the roles 

of the AD and MCI model genes on neurodegenerative and 
intellectual disability diseases. Some of the model genes with 
high weight (estimate) magnitudes (at the top for the positive 
ones or at the bottom for the negative ones) were reviewed 
as follows. OSBPL1A (oxysterol binding protein like 1a) 
is the only shared gene in the AD and in the MCI model. 
OSBPL1A stabilizes GTP-bound RAB7A on late endosomes/
lysosomes and alters functional properties of late endocytic 
compartments via its interaction with RAB7A, while RAB7A 
enhances tau secretion linked to the propagation of tau 
pathology [6]. OSBPL1A was also included in a promising 
gene signature predicting behavior changes of attention-
deficit/hyperactivity disorder (ADHD) [7]. Now from the 
AD model shown in Table 1, the top gene with the highest 
positive weight is SS18L2 (SS18-Like protein 2) which 
is homologous to SS18. SS18 is a component of SWI/SNF 
(switch/sucrose nonfermenting) chromatin remodeling 
subcomplex. There have been a lot of researches on SWI/SNF 
complex and neurodevelopmental disorders or intellectual 
disability [8, 9]. Next on the list is ATP6V1G1 (ATPase H+ 
transporting V1 subunit G1), which is a member of vacuolar-
type ATPases (V- ATPases). V-ATPases and other types of 
ATPases have important roles in neurodegenerative diseases 
[10, 11, 12]. On the opposite negative weight side, the bottom 
two rows on Table 1 are two genes, RPS27 and RPS27A, 
with weight magnitude greater than 0.30. Ribosomal protein 
RPS27 was shown to be over-expressed in glioma [13]. 
RPS27A encodes part of ubiquitin. The ubiquitin-proteasome 
system predominantly driving protein aggregation in the age-
related diseases such as Parkinson’s disease [14]. RPS27A 
was also inferred to be a controller of microglia activation 
in triggering neurodegenerative diseases [15]. Moreover 
RPS27A was documented by MalaCards to be related to the 
neuronal intranuclear inclusion disease of which the cognitive 
impairment might be one of the symptoms. The next AD 
gene with the positive weight is GIMAP7, the GTPase 
domain of the immune associated nucleotide binding protein 
7. GIMAP7 might be through the AMPK signal pathway. 
GIMAP7 suppresses AMPK signal pathway in lung cancer 
cells [16] and it is unclear whether it is true in AD, while 
AMPK was reviewed to have controversially preventive 
and proactive roles on AD in different studies [17]. The next 
gene with the negative weight is FASTKD2 (fas activated 
serine/threonine kinase domain 2), which has a structure 
containing mitochondrial targeting domain, multiple serine/ 
threonine kinase domains and an RNA-binding domain. 
FASTKD2 might be involved with human memory via 
three possible pathways [18]: first, the neuroprotective 
effect of FASTKD2 on memory might be through fas-
mediated apoptosis; second, the findings of rare mutations of 
FASTKD2 leading to cytochrome c oxidase (mitochondrial 

respiratory chain) deficiency or inherited ataxias, suggesting 
its involvement with mitochondrial dysfunction and closely 
related oxidative stress pathways which are strongly related 
to neurodegeneration in aging and disease; at last, FASTKD2 
has a proinflammatory role while inflammation plays central 
roles in compensating cellular stress induced by amyloid-β 
deposition. Interestingly, another AD model gene UQCRC1 
(human ubiquinol- cytochrome c reductase core protein 1) is 
also related to mitochondrial respiratory chain and engaged 
with neuronal apoptotic cell death [19]. There are several 
other genes with notable weights related to inflammation and 
immune system: USP3 deubiquitinates and stabilizes ASC 
[20] (apoptosis associated speck like protein containing a 
caspase recruitment domain), the adaptor for inflammasome 
activation, which was shown to be highly related to AD 
[21, 22]; STAT6 was implicated in several immunity-
related pathological pathways [23] and was demonstrated 
to activate neural stem cell proliferation and neurogenesis 
upon amyloid-β42 aggregation with a zebrafish model [24]; 
FCER2 (Fcϵ receptor II) regulates immunoglobulin E (IgE) 
production and plays essential roles in the differentiation 
of B cells, while B cell depletion was shown to reverse AD 
progression [25, 26]; FCGRT (Fcγ receptor and transporter) 
encodes the heavy chain of neonatal Fc receptor (FcRn). 
FcRn binds to the Fc portion of IgGs, protects IgGs from 
degradation, facilitates IgG transport, and potentiates IgG 
related cellular immune responses. IgG was demonstrated 
to be an aging factor [27], FcRn promotes the development 
and progression of diseases of the nervous system [28], and a 
study demonstrated that FCGRT was elevated in the midbrain 
from schizophrenia patients with high inflammation [29], 
therefore FcRn and IgG may play important roles in the AD 
development.

Some genes of the MCI model are reviewed next. 
ULK1,UBL3,TPST2,EEF1A1 are the top 4 MCI genes with 
positive weights (Table 2) and OSGEPL1, ZSCAN21, SIPA1, 
SDHC are the bottom 4 with negative weights. ULK1 is a 
serine/threonine-protein kinase involved in autophagy in 
response to starvation and regulates autophagosome formation 
[30] where AMPK/mTOR serve as the accelerator/brake of 
ULK1 respectively under starvation or nutrient sufficiency 
conditions [31]. Autophagy were shown to play important 
roles in neurodegenerative diseases [32, 33]. UBL3 (ubiquitin-
like 3) was demonstrated to interact with α-synuclein [34], 
which plays a critical role in the pathogenesis of PD and 
alike, and its aggregates perturb dopaminergic transmission 
and induce presynaptic and postsynaptic dysfunctions and 
cause neuroinflammation [35]. Interestingly, ZSCAN21, 
with a negative weight, was shown to stimulate α-synuclein 
gene SNCA transcription in neuronal cells. TRIM41 is an 
E3 ubiquitin ligase while TRIM17 decreases the TRIM41-
mediated degradation of ZSCAN21. TPST2 (tyrosylprotein 
sulfotransferase 2) catalyzes tyrosine sulfation and was shown 
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to contribute to long-term memory [37]. EEF1A1 (eukaryotic 
translation elongation factor 1 alpha 1) encodes an isoform of 
the alpha subunit of the elongation factor-1 complex, which 
is responsible for the enzymatic delivery of aminoacyl tRNAs 
to the ribosome. A study showed that EEF1A1 participates 
neuroinflammation in PD by regulating the inflammation 
delaying gene GDF15, STC1, MT1E, MT1X, GPNMB, VIP, 
A2M and the accelerating gene IL-6, CCL5 [38]. OSGEPL1 
(o-sialoglycoprotein endopeptidase like 1) is required 
for t6A37 modification in mitochondrial tRNA [39] and 
mitochondrial stress was demonstrated to be highly related 
to MCI [40]. SIPA1 (signal-induced proliferation-associated 
protein 1) is a mitogen induced GTPase activating protein 
(GAP) and activates RAP1, a RAS family member of small 
GTPases. SIPA1 and RAP1 signaling plays the critical role 
in T cell β-selection checkpoint, namely the transition from 
CD4/CD8 double-negative (DN) to double-positive (DP) 
stage, and is crucial for T cell normal development [41, 42]. 
RAP1 signaling is also related to calcium signaling [43]. The 
association of SIPA1 expression on MCI might be through 
these two pathways. SDHC and SDHB are MCI model genes 
with negative weights. Succinate dehydrogenase (SDH) 
complex has 4 subunits SDHA/B/C/D and SDH involves 
with multiple neurodegenerative diseases [44].

Conclusions
A novel feature selection and model building method was 

proposed for gene expression analysis using ROC and RLM, 
its application to AD/MCI prediction based on public PBMC 
expression data set has given rise to a 30-gene AD prediction 
model and a 23-gene MCI prediction model, which were 
validated with independent data sets. The corresponding 
model building AUC for AD and MCI is 0.98 and 0.96, while 
the validatingAUC is 0.93 and 0.88 respectively, which 
are superior to other published results. Literature reviews 
confirmed that most of model genes were demonstrated to 
be highly relevant, although some other novel genes might 
be worthwhile for further investigation. The method is very 
general and can be applicaple to build models for any other 
gene expression biomarker discovery studies.
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